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Abstract. The provision of Quality of Service (QoS) in computing and
communication environments has been the focus of much research in
industry and academia during the last decades. A key component for
networks with QoS support is the egress link scheduling algorithm. Apart
from providing a good performance in terms of, for example, good end-to-
end delay and fair bandwidth allocation, an ideal scheduling algorithm
implemented in a high-performance network with QoS support should
satisfy other important property which is to have a low computational
and implementation complexity. This is especially important in high-
performance networks due to their high speed and because switches are
usually implemented in a single chip.

In [7] we proposed the Self-Clocked Fair Queuing Credit Aware
(SCFQ-CA) and the Deficit Round Robin Credit Aware (DRR-CA)
schedulers in order to adapt the SCFQ and DRR algorithms to net-
works with a link-level flow control mechanism. In this paper, we propose
specific implementations of these two schedulers taking into account the
characteristics of current high-performance networks. Moreover, we com-
pare the complexity of these two algorithms in terms of silicon area and
computation delay. In order to carry out this comparison, we have per-
formed our own hardware implementation for the different schedulers. We
have modeled the schedulers using the Handel-C language and employed
the DK design suite tool from Celoxica in order to obtain hardware es-
timates on silicon area and arbitration time.
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1 Introduction

The advent of high-speed networking has introduced opportunities for new ap-
plications. Current packet networks are required to carry not only traffic of
applications, such as e-mail or file transfer, which does not require pre-specified
service guarantees, but also traffic of other applications that requires different
performance guarantees, like real-time video or telecommunications [8]. Even
in the same application, different kinds of traffic (e.g. I/O requests, coherence
control messages, synchronization and communication messages, etc.) can be
considered, and it would be very interesting that they were treated according to
their priority [3].

The provision of QoS in computing and communication environments has been
the focus of much discussion and research in academia during the last decades.
This interest in academia has been renewed by the growing interest on this topic
in industry during the last years. A sign of this growing interest in industry is the
inclusion of mechanisms intended for providing QoS in some of the last network
standards like Gigabit Ethernet, InfiniBand, or Advanced Switching (AS). An
interesting survey with the QoS capabilities of these network technologies can
be found in [10]. Common characteristics of the specifications of these network
technologies intended to provide QoS are the use of a link-level flow control
mechanism, which makes the networks lossless, a reduced set of Virtual Channels
(VCs), and an egress link scheduler to arbitrate among the traffic transmitted in
each VC. These last two mechanisms permit us to aggregate traffic with similar
characteristics in the same VC and to provide each VC with a different treatment
according to its requirements, at the style of the differentiated services (DiffServ)
QoS model [1].

A key component for networks with QoS support is the output (or egress
link) scheduling algorithm (also called service discipline), which selects the next
packet to be transmitted and decides when it should be transmitted [4], [18].
A lot of possible scheduling algorithms have been proposed in the literature.
However, most of these algorithms were proposed for the Internet scenario with
a high number of possible flows, without taking into account a link-level flow
control mechanism, and were intended mainly to be implemented by software.
These characteristics differ from the requirements of current high-performance
networks. In [7], we already gave a first step in adapting some scheduling algo-
rithms to high-performance networks by proposing new versions of some sched-
ulers in order to support a link-level flow control mechanism.

Apart from providing a good performance in terms of, for example, good end-
to-end delay (also called latency) and fair bandwidth allocation, an ideal schedul-
ing algorithm implemented in a high-performance network with QoS support
should satisfy other important property which is to have a low computational
and implementation complexity [13]. We can measure the complexity of a sched-
uler based on two parameters: Silicon area required to implement the scheduling
mechanism and time required to determine the next packet to be transmitted.
A short scheduling time is an efficiency requirement that takes more importance
in high-performance networks due to their high speed. Moreover, switches of
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high-performance interconnection technologies are usually implemented in a sin-
gle chip. Therefore, the silicon area required to implement the various switch
elements is a key design feature. Note that the scenario that we are addresing
here is very different than for example IP routers with QoS support, where these
algorithms are usually implemented by software instead of harware.

The fair queuing algorithms are an important kind of scheduling algorithms
that allocate bandwidth to the different flows in proportion to a specified set
of weights. The perfect fair queuing scheduling algorithm is the General Pro-
cessor Sharing (GPS) scheduler [4], [9], which is based on a fluid model that
provides perfect instant fairness in bandwidth allocation and has many desir-
able properties [15], [9]. Different packet-by-packet approximations of GPS have
been proposed, which try to emulate the GPS system as accurately and simply
as possible while still treating packets as entities.

The “Sorted-priority” family of algorithms, which includes the Weighted Fair
Queuing (WFQ) [4] and Self-Clock Fair Queueing SCFQ [6] algorithms, are
known to offer good delay bounds [14]. This kind of scheduling algorithms assign
each packet a tag and the scheduling is made based on the ordering of these tags.
The main complexity factors in this kind of schedulers comes from tag calculation
and tag sorting. Note that these algorithms were proposed mainly for the Internet
scenario with a high number of possible flows. Moreover, a common problem in
the sorted-priority approach is that tags cannot be reinitialized to zero until the
system is completely empty and all the sessions are idle. The reason is that these
tags depend on a common-reference virtual clock and are an increasing function
of the time. In other words, it is impossible to reinitialize the virtual clock during
the busy period, which, although statistically finite (if the traffic is constrained),
can be extremely long, especially given that most communication traffic exhibits
self-similar patterns which lead to heavily tailed buffer occupancy distributions.

Toavoid the complexity of the sorted-priority approach, theDeficitRoundRobin
(DRR) algorithm [12] has been proposed. The aim of DRR is to implement fair
queuing and achieve practically acceptable complexity at the expense of other per-
formance metrics such as fairness and delay. Due to its computational simplicity,
recent research in the Differentiated Services area proposes the DRR as a feasible
solution for implementing the Expedited Forwarding Per-hop Behavior [5].

In this paper, we propose specific implementations (taking into account the
characteristics of current high performance networks) of the SCFQ and DRR
scheduling algorithms and compare their complexity in terms of silicon area and
computation delay. In fact, we are going to consider the modified versions of these
two algorithms that we proposed in [7] in order to maintain the fair bandwidth
allocation in networks with a link-level flow control network, which is the case in
most current high-performance network technologies. We have chosen the SCFQ
algorithm as an example of “sorted-priority” algorithm and the DRR algorithm
because of its very small computational complexity.

In [16] and [11] interesting implementations for the SCFQ scheduler are pro-
posed. However, these implementations were designed for a high number of
possible flows. Note that in our case there is going to be just a limited number
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of VCs. This allows us to consider more efficient implementations. Moreover,
the case of the SCFQ implementation [11] was intended for fixed packet sizes,
specifically, for an ATM environment.

Therefore, we have performed our own hardware implementation for the dif-
ferent schedulers. We have modeled the schedulers using the Handel-C language
[2] and employed the DK design suite tool from Celoxica in order to obtain
hardware estimates on silicon area and arbitration time.

The structure of the paper is as follows: Sections 2 and 3 present the DRR-CA
and SCFQ-CA scheduling algorithms, respectively, state how we have adapted
them to current high-performance network characteristics, and describe specific
hardware implementation decisions. In Section 4 a comparison study on the
implementation and computational complexity of the two schedulers is provided.
Finally, some conclusions are given.

2 Implementation of the SCFQ-CA Scheduler

The Self-Clocked Weighted Fair Queuing (SCFQ) algorithm [6] is a variant of
the well known Weighted Fair Queuing (WFQ) mechanism [4] which has a lower
computational complexity. This objective is accomplished by adopting a different
notion of the virtual time employed in WFQ. Instead of linking the virtual time
to the work progress in the GPS system, the SCFQ algorithm uses a virtual time
function which depends on the progress of the work in the actual packet-based
queuing system. This approach offers the advantage of removing the computation
complexity associated to the evaluation of the virtual time that may make WFQ
unfeasible in high-speed interconnection technologies.

Therefore, when a packet arrives, SCFQ uses the service tag of the packet
currently in service as the virtual time to calculate the new packet tag. Thus, in
this case the service tag of the kth packet of the ith flow is computed as

Sk
i = max{Sk−1

i , Scurrent} +
Lk

i

φi
,

where Lk
i is the packet length, φi the weight assigned to its flow, and Scurrent is

the service tag of the packet being serviced. Figure 1 shows the pseudocode for
the SCFQ algorithm.

In [7] we proposed a new version of this scheduler, the SCFQ Credit Aware
(SCFQ-CA) algorithm, that takes into account the link level flow control mech-
anism and VCs instead of flows. The SCFQ-CA algorithm that we proposed
works in the same way as the SCFQ algorithm, except in the following aspects:

– When a new packet arrives at a VC queue, a service tag is assigned only if
the arrived packet is at the head of the VC and there are enough credits to
transmit it.

– When a packet is transmitted, if there are enough credits to transmit the
next packet, the VC service tag is recalculated.

– When a VC is inactive due to a lack of credits and receives enough credits
to transmit again, a new service tag is assigned to the VC.
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PACKET ARRIVAL (newPacket, flow):
newPacketserviceTag ← max(currentServiceTag, f lowlastServiceTag)

+ newPacketsize

flowreservedBandwidth

flowlastServiceTag ← newPacketserviceTag

ARBITRATION:
while (There is at least one packet to transmit)

selectedPacket ← Packet with the minimum serviceTag
currentServiceTag ← selectedPacketserviceTag

Transmit selectedPacket
if (There are no more packets to transmit)

∀flow flowlastServiceTag ← 0
currentServiceTag ← 0

Fig. 1. Pseudocode of the SCFQ scheduler

Note that once that there is at least one packet in a VC queue, the value of
the service tags of the packets that arrive after this first packet depends only on
the value of the precedent service tags and not on the value of Scurrent at the
arrival time. Therefore, we can wait to stamp a packet until it arrives at the head
of a VC. This allows us to simplify in a high degree the original SCFQ algorithm
by storing not a service tag per packet, but a service tag per flow or VC. This
service tag represents the service tag of the packet at the head of the VC queue.
Note that this makes much easier and simpler to modify this algorithm to take
into account a link-level flow control mechanism. Each VC service tag is then
computed as:

Si = Scurrent +
Lfirst

i

φi
,

where Lfirst
i is the size of the packet at the head of the ith VC.

With these modifications, we have already taken into account the presence of
an egress link scheduler. However, we can take more advantage of the limited
number of VCs to simplify the actual implementation. The SCFQ-CA algorithm,
as the original SCFQ algorithm and most sorted-priority algorithms, still has the
problem of the increasing tag values and the possible overflow of the registers
used to store these values. Therefore, we propose a modification to the SCFQ-
CA scheduler that makes impossible this overflow. This modification consists in
subtracting the service tag of the packet currently being transmitted to the rest
of service tags. If we consider only a tag per VC, this means to subtract the
service tag of the VC to which the packet being transmitted belongs to the rest
of VCs service tags. This limits the maximum value of the service tags while still
maintaining the absolute differences among their values. This also means that
Scurrent is always equal to zero and thus,



1094 R. Mart́ınez et al.

Si =
Lfirst

i

φi
.

Moreover, the service tags are limited to a maximum value maxS : maxS = MTU
minφ

where MTU is the maximum packet size and minφ is the minimum possible
weight that can be assigned to a VC. The resulting SCFQ-CA scheduling algo-
rithm is represented in the pseudocode shown in Figure 2. Note that this last
modification adds the complexity of subtracting to all the service tags a certain
value each time a packet is scheduled. This makes this modification feasible in
hardware only when a few number of VCs is considered, which is the common
trend in the last high-performance network proposals.

PACKET ARRIVAL(newPacket, VC):
if (newPacket is at the head in the queue of V C) and

(The flow control does allow transmitting from V C))
V CserviceTag ← V CsizeFirst

V CreservedBandwidth

ARBITRATION:
while (There is at least one active VC)

selectedV C ← Active VC with the minimum serviceTag
currentServiceTag ← selectedV CserviceTag

Transmit packet from selectedV C
∀ active V C

V CserviceTag ← V CserviceTag − currentServiceTag
if ((There are more packets in the queue of selectedV C) and

(The flow control does allow transmitting from selectedV C))
selectedV CserviceTag ← selectedV CsizeFirst

selectedV CreservedBandwidth

Fig. 2. Pseudocode of the improved SCFQ-CA scheduler

In order to implement this scheduler, when a new packet arrives at the SCFQ-
CA scheduler, apart from taking note of the packet size and activating the VC if
there are enough flow control credits to transmit that packet, this scheduler must
calculate the packet service tag. As stated before, we have solved the problem
of the possible overflow of the service tags. Moreover, this modification entails a
simplification of the service tag computation. In order to decide which is the next
packet to be transmitted, the SCFQ-CA algorithm must choose the packet from
the active VC with the smallest service tag. In order to do this in an efficient
way, we have employed a bitonic network, which obtains the selected VC in
log(#VCs) cycles. The structure of the selector module is shown in Figure 3.

Note that, in order to calculate the packet service tag a division operation is
performed. This operation requires an arithmetical unit that is not simple at all.
Handel-C, which is the language that we have used to model the schedulers, of-
fers a divisor operand that calculates the result in one cycle (as all the Handel-C
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Fig. 3. Structure of the selector module for the SCFQ-CA scheduler

statements). This operand makes the division very short in terms of number of
cycles but, it makes the cycle time very long, and thus it makes the arbitration
time quite long. Therefore, we have employed a mathematical division unit that
performs the division in several cycles. Specifically, it takes a number of cycles
equal to the length of the operators plus one. With this new version the calcula-
tion of the time tag requires more cycles to be performed but reduces the cycle
time and thus, the arbitration time, which is a more critical value. Therefore,
the estimates that we show in Section 4 have been obtained using this second
version.

3 Implementation of the DRR-CA Scheduler

The Deficit Round Robin (DRR) algorithm [12] is a variation of the Weighted
Round Robin (WRR) algorithm that works on a proper way with variable packet
sizes. In order to handle properly variable packet sizes, the DRR algorithm asso-
ciates each queue with a quantum and a deficit counter. The quantum assigned
to a flow is proportional to the bandwidth assigned to that flow. The sum of all

Fig. 4. Structure of the next VC to transmit selector in the DRR-CA scheduler
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the quantums is called the frame length. For each flow, the scheduler transmits
as many packets as the quantum allows. When a packet is transmitted, the quan-
tum is reduced by the packet size. The unused quantum is saved in the deficit
counter, representing the amount of quantum that the scheduler owes the flow.
At the next round, the scheduler will add the previously saved quantum to the
current quantum. When the queue has no packets to transmit, the quantum is
discarded, since the flow has wasted its opportunity to transmit packets.

The DRR Credit Aware (DRR-CA) algorithm that we proposed in [7] works
in the same way as the DRR algorithm, except in the following aspects:

– A VC queue is considered active only if it has at least one packet to transmit
and if there are enough credits to transmit the packet at the head of the VC.

– When a packet is transmitted, the next active VC is selected when any of
the following conditions occurs:

• There are no more packets from the current VC or there are not enough
flow control credits for transmitting the packet that is at the head of the
VC. In any of these two cases, the current VC becomes inactive, and its
deficit counter becomes zero.

• The remaining quantum is less than the size of the packet at the head
of the current VC. In this case, its deficit counter becomes equal to the
accumulated weight in that instant.

A possible way of implementing the mechanism that selects the next active VC
would be to check sequentially all the VCs in the list starting from the contiguous
position of the last selected VC. However, in order to make this search efficient,
we have implemented it with a barrel shifter connected to an order based bitonic
network. The barrel shifter rearranges the list in the correct order of search and
the bitonic network finds the first active VC in a logarithmic number of cycles.
The structure for this selector function is shown in Figure 4.

4 Hardware Estimates

In this section we analyze the implementation and computational complexity of
the DRR-CA and SCFQ-CA schedulers. We have modeled these schedulers using
Handel-C language [2] and employed the DK design suite tool from Celoxica in
order to obtain hardware estimates on silicon area and arbitration time. Handel-
C’s level of design abstraction is above Register Transfer Level (RTL) languages,
like VHDL and Verilog, but below behavioral. In Handel-C each assignment takes
one clock cycle to complete, so it is not a behavioral language in terms of timing.

The source code completely describes the execution sequence and the most
complex expression determines the clock period. Note that the Handel-C code
that we have designed can actually be used to implement the schedulers in a
Field Programmable Gate Array (FPGA) or, if the appropriate conversion is
made, in an Application Specific Integrated Circuit (ASIC). However, this has
not been the objective of our work, but to obtain the relative differences on



Hardware Implementation Study of the SCFQ-CA and DRR-CA 1097

Fig. 5. Design flow with DK employing Handel-C

silicon area and arbitration time for the different schedulers and to measure the
effect of the number of VCs and the Maximum Transfer Unit (MTU).

In order to obtain the hardware estimates in which we are interested:

1. We have modeled in Handel-C a full egress queuing system, which includes
the scheduling mechanism.

2. We have validated the schedulers employing the simulation and debugging
functionality of the DK design suite.

3. We have isolated the scheduler module in order to obtain estimates without
influence of other modules.

4. We have obtained the Electronic Design Interchange Format (EDIF) output
for a Virtex 4 FPGA from Xilinx [17].

A cycle count is available from the Handel-C source code: Each statement in
the Handel-C source code is executed in a single cycle in the resulting hardware
design and thus, the number of cycles required to perform a given function can be
deduced directly from the source code. Moreover, an estimate of gate count and
cycle time is generated by the EDIF Handel-C compiler. The cycle time estimate
is totally dependent on the specific target FPGA, in this case the Virtex 4 [17].
However, as our objective is to obtain relative values instead of absolute ones, we
consider that this approach is good enough to be able to compare the complexity
of the different schedulers. Figure 5 reflects the design flow that we have followed.
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Fig. 6. Comparison of the silicon area and arbitration time required by the DRR-CA
and the SCFQ-CA schedulers for different number of VCs and MTU

Figure 6 shows a comparison of the DRR-CA and SCFQ-CA algorithms and
how the increment in the number ofVCs and the MTUaffects the complexity of the
two schedulers. Specifically, we have varied the number of VCs with a fixed MTU
of 32 and the MTU value with the number of VCs fixed to 8. The figure shows the
percentage of increment in silicon area and arbitration time respect to the silicon
area and arbitration time required by the DRR-CA scheduler with 2 VCs (when
varying the number of VCs) and a MTU of 2 (when varying the MTU).

Regarding the effect of the number of VCs, Figure 6 shows that this number
influences dramatically the silicon area and arbitration time required by the
DRR-CA and SCFQ-CA schedulers. Note that in the case of the arbitration
time, the increment is due to both, the increase in the cycle time and the increase
in the number of cycles required to compute the arbitration. Note also that the
X axis is in logarithmic scale, thus a linear growth in data plot actually means a
logarithmic data growth, and an exponential growth in data plot actually means
a linear data growth. On the other hand, regarding the effect of the MTU, Figure
6 shows that the increase in silicon area and time when increasing the MTU is
not so important if compared with the effect of the number of VCs.

Finally, this figure shows, as expected, that the DRR-CA scheduler is the
simplest scheduler in terms of silicon area and arbitration time. The SCFQ-CA
scheduler requires quite more silicon area than the DRR-CA scheduler. How-
ever, the difference in arbitration time is not so big. Nevertheles, as was shown
in [7] for multimedia traffic the SCFQ-CA scheduler is able to provide much
more tighter QoS requirements than the DRR-CA scheduler. These results are
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Fig. 7. Latency comparison for controled load (CL), video (VI), and voice (VO) traffic,
for the DRR-CA and SCFQ-CA schedulers

depicted again in Figure 7, which shows the performance provided by the DRR-
CA and SCFQ-CA schedulers to three types of multimedia traffic that are simul-
taneously injected into the network with different amounts of best-effort traffic.

5 Conclusions

Current high-performance networks with QoS support require egress link schedul-
ing algorithms to be fast and simple. Moreover, most well-known algorithms were
designed for managing a lot of flows in lossy networks. Therefore, it is necesary
to propose specific implementations of the scheduling algorithms adapted to
current high-performance requirements. In this work we have proposed imple-
mentations and performed a complexity study for two fair queueing scheduling
algorithms, the DRR-CA and SCFQ-CA schedulers, taking into account these
requirements, and with the objective of fullfilling the complexity constrains in
high-performance networks.

The complexity estimates that we have obtained show that the SCFQ-CA
scheduler is quite more complex than the DRR-CA in terms of silicon area.
However, this algorithm provides much better performance in terms of latency.
Therefore, the decision of choosing one of these algorithms for the switches of a
real network will be determined by how sensitive to the QoS requirements are
the applications that are expected to traverse that network and by the area that
there is available to implement the schedulers at the egress links.
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