
Hybrid Techniques for Fast Multicore Simulation�

Manu Shantharam, Padma Raghavan, and Mahmut Kandemir

Department of Computer Science & Engineering,
Pennsylvania State University, University Park, PA 16802, USA
{shanthar,raghavan,kandemir}@cse.psu.edu

Abstract. One of the challenges in the design of multicore architectures concerns
the fast evaluation of hardware design-tradeoffs using simulation techniques.
Simulation tools for multicore architectures tend to have long execution times that
grow linearly with the number of cores simulated. In this paper, we present two
hybrid techniques for fast and accurate multicore simulation. Our first method,
the Monte Carlo Co-Simulation (MCCS) scheme, considers application phases,
and within each phase, interleaves a Monte Carlo modeling scheme with a tra-
ditional simulator, such as Simics. Our second method, the Curve Fitting Based
Simulation (CFBS) scheme, is tailored to evaluate the behavior of applications
with multiple iterations, such as scientific applications that have consistent cy-
cles per instruction (CPI) behavior within a subroutine over different iterations.
In our CFBS method, we represent the CPI profile of a subroutine as a signa-
ture using curve fitting and represent the entire application execution as a set of
signatures to predict performance metrics. Our results indicate that MCCS can
reduce simulation time by as much as a factor of 2.37, with a speedup of 1.77 on
average compared to Simics. We also observe that CFBS can reduce simulation
time by as much as a factor of 13.6, with a speedup of 6.24 on average. The ob-
served average relative errors in CPI compared to Simics are 32% for MCCS and
significantly lower, at 2%, for CFBS.

1 Introduction

Software simulation models have been used to evaluate the performance of computer
hardware for over two decades due to low prototyping costs [3, 5, 7, 10]. With a re-
cent shift in processor design to multicores [1,2,17,20,21], as a result of technological
advances and packaging limits, existing software simulation models for single core pro-
cessors [3,16] have been expanded to simulate multicore environments [5,9,10,13,19].
However, the current generation multicore simulators are slow [11] and the performance
degrades as the number of simulated cores increases. This performance degradation is
especially visible when large multithreaded benchmarks are used. The execution of
these codes on modern multicore simulators is so slow that researchers report experi-
mental results based on partial runs that are not representative of the execution of the
entire benchmarks [11, 14]. Hence, there is a need for alternate software based simula-
tion techniques for fast and accurate multicore architecture exploration.

� This work was funded in part through grants 0720749, 0444345, 0811687, 0720645, and
0702519 from the National Science Foundation.

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 122–134, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Hybrid Techniques for Fast Multicore Simulation 123

In this paper, we propose two hybrid techniques for fast and accurate multicore sim-
ulation. Our first method, called the MCCS (Monte Carlo Co-Simulation), divides ap-
plication execution into phases with each phase representing a subroutine, or a set of
subroutines. Each phase is partially run using Simics [10] and partially using a Monte
Carlo predictive model. Our proposed MCCS scheme reduces the simulation time by a
factor of 1.77 on average, with average relative error in CPI (cycles per instruction) of
32% compared to Simics. Our second method, CFBS (Curve Fitting Based Simulation),
is based on the observation that most scientific applications have multiple iterations and
their behavior is repetitive over various iterations. Thus, we represent the CPI profile of
a subroutine as a signature using curve fitting and represent the entire application exe-
cution as a set of signatures to predict performance metrics. Our results indicate that the
CFBS scheme reduces the simulation time by a factor of 6.24 on average, with average
relative error in CPI of 2% compared to Simics.

We would like to observe that our proposed methods, MCCS and CFBS, are different
qualitatively from the previously proposed techniques like Simflex [13] and Simpoint
[4] that help reduce the actual simulation time. Section 7 gives a detailed comparison
between our methods and these techniques.

The reminder of this paper is organized as follows. In Section 2, we discuss our
experimental setup and the tools we use. In Sections 3 and 4, we present the proposed
MCCS and CFBS schemes respectively. In Section 5, we present experimental results
and in Section 6, we report on a sensitivity study. In Section 7, we describe related
work, and in Section 8, we conclude this paper with a summary of our major results.

2 Experimental Setup

We use our schemes, MCCS and CFBS, in conjunction with a full system simulator.
For our experiments, Simics [10], a full system simulator, is configured as a multicore

Table 1. Benchmark description. NAS: FT, BT, CG;
SPLASH2: Barnes, Ocean, Raytrace.

FT
Computational kernel of 3-D FFT-based
spectral method. Performs three
1-D FFT, one for each dimension.

BT
Simulates CFD application that uses an
implicit algorithm to solve 3-D
compressible Navier-Stokes equations.

CG
Conjugate Gradient method to compute an
approximation to the smallest eigenvalue
of a large, sparse, unstructured matrix.

Barnes
Simulates the interaction of a system of
bodies in 3-D over a number of time
-steps using Barnes-Hut N-body method.

Ocean
Simulates large-scale ocean movements
based on eddy and boundary currents.

Raytrace
Renders a 3-D scene onto a 2-D image
plane using optimized ray tracing.

processor to obtain the
necessary inputs for our
models. For our base sys-
tem, we configure Sim-
ics to simulate a four-core
UltraSPARC-III architecture
[6] with a 64 KB private
level 1 (L1) cache per core,
and a 4MB shared level 2
(L2) cache. Table 2 lists the
various parameters used in
our base configuration and
their values. Additionally,
in our base configuration,
we use a window size of 10
million instructions for the
CPI calculation.

124 M. Shantharam, P. Raghavan, and M. Kandemir

We use a subset of NAS OMP [18] and SPLASH2 [12] benchmark suites with
varying workload characteristics. In our experiments, we use three NAS parallel OMP
benchmarks: FT, BT and CG, each with problem size ‘A’ and three SPLASH2 bench-
marks: Barnes, Raytrace and Ocean. A brief description of these benchmarks is in-
cluded in Table 1. The current benchmark selection is based on the ease of identifying
the phases in the code manually.

3 Monte Carlo Co-Simulation (MCCS)

In this section, we discuss MCCS which uses a Monte Carlo predictive model in con-
junction with Simics to predict performance metrics of scientific applications. In
Section 3.1, we describe our Monte Carlo predictive model. In Section 3.2, we intro-
duce the concept of windowed CPI that is useful in understanding the behavior of our
target applications and finally, in Section 3.3, we describe the simulation flow of our
MCCS scheme.

3.1 Monte Carlo Predictive Model

We model processor cores and the memory subsystem, and consider four basic types
of instructions - load, store, floating point and “other”. The “other” instruction type
includes all instructions that are not loads, stores or floats. We further classify a load
instruction as load L1 hit, load L2 hit or load memory bound. Thus, any application
execution can be represented as a mix of our six instruction types (floating point, store,
load L1 hit, load L2 hit, load memory bound, and “other”). The processor is modeled as
a unit that issues these six types of instructions based on their probability of occurrence.
The input parameters to our model are the total number of instructions to be issued and
the histograms representing the instruction mix. The output of our model is a CPI distri-
bution. Figure 1 shows a pictorial representation of our model for a two-core processor,
where p1, p2, p3 are the probabilities that a load instruction is satisfied in L1 cache, in
L2 cache, or in memory, respectively, and p0 is the probability that the instruction is a

L1

Cache

Core 1

FPU
L1

Cache

Core 2

FPU

Shared L2 Cache

Off-chip memory

p0p1

p2

p3

p0p1

p2

p3

Fig. 1. Monte Carlo predictive model for a
two-core processor

Table 2. Parameters used in our base
configuration

L1 cache
private, 64KB
2 way assoc

L2 cache
shared, 4MB
16 way assoc

L1 cache latency 3 cycles
L2 cache latency 10 cycles
Off-chip memory latency 260 cycles

Hybrid Techniques for Fast Multicore Simulation 125

floating point instruction1. We use Simics to obtain the application instruction mix in
terms of our six instruction types, and to calculate the probability of their occurrence.
Note that Figure 1 is more of an instruction flow diagram based on certain probabilities
and it does not represent the actual hardware.

3.2 Understanding Application Performance Using Windowed CPI

Performance is generally measured in terms of average CPI or average IPC of an ap-
plication. However, these metrics do not provide a detailed insight into application’s
performance behavior over time, i.e., these metrics do not reveal if the application per-
formance is uniform or variable over time. In order to gain insight into time-dependent
performance behavior of applications, we divide its execution time into windows, where
a window comprises a fixed number of instructions, for example, 10 million instruc-
tions. The CPI for a window is called as windowed CPI and unless stated otherwise,
CPI in this paper refers to windowed CPI.

3.3 MCCS Simulation Flow

In this section, we describe the simulation flow of our MCCS method. We observe that
the CPI behavior of an application varies significantly across subroutines and there are
intervals of execution within a subroutine, wherein the CPI behavior is uniform. Based
on these observations, we divide the application’s execution into phases, each phase
representing a subroutine or a set a subroutines. A set of subroutines is represented as
a phase if the execution time of individual subroutines is very short. At present, we are
using an offline phase detection method wherein we manually identify the beginning
and the end of subroutines (phases) using Simics breakpoints.

We integrate our Monte Carlo predictive model with Simics to take advantage of
these phases, and call this integrated method the MCCS. Each application phase is sim-
ulated with Simics and Monte Carlo model in an interleaved manner. For each phase,
simulation starts with the Simics timing model. After executing a fixed number of in-
structions, we switch to timing model of our Monte Carlo predictive technique. During
the Simics run, we construct histograms representing the probabilities of occurrence
of our instruction types for every window within a phase. The histograms capture the
phase-wise behavior of the application during the Simics execution. We use these his-
tograms in our Monte Carlo predictive model to predict the latencies of our instruction
types. While in the Monte Carlo predictive mode, Simics is executed in background
without its timing model (“Simics ff”). Because of “Simics ff” mode, Simics does not
capture any latencies caused by memory subsystem. We account for these latencies
in our Monte Carlo predictive model. We use Simics in “Simics ff” mode to ensure
correctness of benchmark execution.

In our experiments, we interleave the executions of Simics and our model twice
within a subroutine so that we capture the heterogeneous behavior, i.e., the intervals
with uniform CPI behavior within a subroutine. A simple execution flow diagram for
this model is shown in Figure 2 where there is a single instance of interleaving of our

1 Note that since we target scientific applications, we consider only floating-point data. Our
strategy can easily be extended to other data types as well.

126 M. Shantharam, P. Raghavan, and M. Kandemir

Simics

Our

model

Simics

ff
Simics Simics

Our

model

Our

model

Simics

ff

Simics

ff

Fig. 2. MCCS simulation flow. The vertical dashed lines represents phase boundaries, “Simics ff”
represents Simics’s fast forward execution mode.

model with Simics. The expected accuracy and speed of MCCS is dependent on the
number of interleavings within a phase. The more the interleavings, the better would
be the accuracy and slower would be the simulation. We have fixed the number of
interleavings to two per phase so that we could tradeoff between speed and accuracy.

4 Curve Fitting Based Simulation (CFBS)

In this section, we introduce our second hybrid simulation technique, referred to as
the CFBS. This technique is tailored to evaluate the behavior of scientific applications
on multicores. We observe that scientific applications have multiple iterations of the
same code sequences. For example, consider Figure 3 which gives the pseudo code for
the NAS FT benchmark. Notice that fft subroutine is called repeatedly over different
iterations and fft subroutine in turn calls subroutines cffts1, cffts2, cffts3.

do iter = 1, niter
 call evolve(u0, u1, …)

 call fft(-1, u1, u1)
 call checksum(iter, u1, …)

end do

subroutine fft(dir, x1, x2)
 .

 .
call cffts3(-1, dims(1), dims(2), dims(3), …)

call cffts2(-1, dims(1), dims(2), dims(3), …)
call cffts1(-1, dims(1), dims(2), dims(3), …)
 .

 .
 end

Fig. 3. Left: Code segment of FT benchmark showing fft subroutine being called multiple times
within a loop. Right: Code segment of FT benchmark showing fft subroutine.

A detailed analysis of application behavior shows that the CPI behavior of our target
applications is repetitive over their entire execution. Consider as an example Figure 4,
which shows the CPI behavior of all iterations of the cffts3 subroutine of NAS FT
benchmark. Observe that the CPI behavior of cffts3 subroutine over different iterations
exhibit similar CPI behavior. This repetitive behavior is due to the same memory access
pattern and similar cache behavior of this subroutine over different iterations. We use
this property of subroutines to reduce the simulation time of scientific applications.

In the CFBS scheme, we first run Simics for one iteration of the application. During
this run, we compute the windowed CPIs for each subroutine call and use a curve fit-
ting method to fit these data points (windowed CPIs) per subroutine. There are different

Hybrid Techniques for Fast Multicore Simulation 127

0

1

2

3

4

5

6

1 11 21 31 41 51 61 71 81

C
P

I

Number of steps

Iteration 1

0

1

2

3

4

5

6

1 11 21 31 41 51 61 71

C
P

I

Number of steps

Iteration 2

0

1

2

3

4

5

6

7

1 11 21 31 41 51 61 71

C
P

I

Number of steps

Iteration 3

0

1

2

3

4

5

6

7

1 11 21 31 41 51 61 71

C
P

I

Number of steps

Iteration 6

0

1

2

3

4

5

6

1 11 21 31 41 51 61 71

C
P

I

Number of steps

Iteration 5

0

1

2

3

4

5

6

1 11 21 31 41 51 61 71 81

C
P

I

Number of steps

Iteration 4

Fig. 4. CPI behavior of cffts3 function for all six iterations. We see that all iterations exhibit a
similar behavior.

Fig. 5. Curve fitting techniques

do iter = 1, 5

 call subroutine 1

 call subroutine 2

 call subroutine 3

end do

call subroutine 1

call subroutine 2

call subroutine 3

do iter = 2, 5

 subroutine 1 signature

 subroutine 2 signature

 subroutine 3 signature

end do

Fig. 6. Left: Actual code representation. Right: Representation in CFBS model.

ways in which we can fit a curve to the given data [15]. Figure 5 illustrates four curve
fitting techniques, a curve fit with polynomial of degree 3 (0.0004X3 − 0.0212X2 +
0.3057X + 3.4483), a curve fit with polynomial of degree 5 (0.0002X5 − 0.006X4 +
0.0883X3 − 0.6928X2 + 2.4728X + 1.7), a cubic spline interpolation, and a linear

128 M. Shantharam, P. Raghavan, and M. Kandemir

interpolation, applied to data points of FT application. We observe linear spline inter-
polation and cubic spline interpolation fit our data better than the polynomial curve
fitting techniques. Since the linear spline interpolation technique is simpler than cubic
spline interpolation technique, we use linear interpolation for all our experiments. The
fitted curve represents the CPI profile of that subroutine, we call this as a subroutine
signature. For the subsequent iterations of the application, we use the subroutine signa-
ture of each subroutine to represent its execution. As a result, we are able to reduce the
simulation time of the application by reducing the number of iterations to be simulated
using Simics while accurately predicting the CPI behavior. Figure 6 illustrates a simple
example of how the subroutine calls are represented in the original application and in
our CFBS model.

5 Experimental Evaluation

In this section, we present our experimental results. Consider Figure 7, which shows
the CPI behavior of FT benchmark on a four-core processor configuration. The left
plot shows the CPI metric as reported by Simics, the middle plot shows the CPI metric
as reported by MCCS, and the right plot shows the CPI metric as reported by CFBS.
We observe that the CPI behavior of CFBS is much closer to Simics than MCCS. In
Figure 13, we show the average relative error in CPI for MCCS and CFBS models
compared to Simics. For FT benchmark, these errors are 90% and 2% respectively. In
this case, the inaccuracy in MCCS can be attributed to lesser number of instructions
simulated using Simics before switching to our Monte Carlo predictive model. Figure 8
shows results for Simics, MCCS and CFBS methods for BT benchmark. The average
relative error in CPI for MCCS model is around 42%. The other observations and results
for BT are similar to that of FT. Figures 9, 10, 11 and 12 show the CPI behavior reported
by these models for CG, Barnes, Ocean and Raytrace benchmarks respectively. We can
see from Figure 13 that apart from FT and BT, MCCS model’s average relative error
compared to Simics is around 20%. Overall, we see that the MCCS and CFBS schemes
are 68% and 97.4% accurate on average. The higher accuracy of CFBS is due to the
repetitive behavior of our target applications.

In Table 3, we list the simulation times, in minutes, for our benchmarks using Sim-
ics, MCCS, and CFBS. Note that under MCCS, values within the parenthesis are the
simulation times of pure Simics and our Monte Carlo predictive model, respectively.

0

5

10

15

20

1
10

1
20

1
30

1
40

1
50

1
60

1
70

1
80

1
90

1

10
01

11
01

12
01

13
01

14
01

C
P

I

Number of steps

Simics

0

5

10

15

20

1
10

1
20

1
30

1
40

1
50

1
60

1
70

1
80

1
90

1

10
01

11
01

12
01

13
01

14
01

C
P

I

Number of steps

CFBS

0

5

10

15

20

1 101 201 301 401 501 601 701 801

C
P

I

Number of steps

MCCS

Fig. 7. CPI behavior of FT when run on a four-core processor

Hybrid Techniques for Fast Multicore Simulation 129

0

2

4

6

8

10

12

14

1

2
2

4
3

6
4

8
5

1
0
6

1
2
7

1
4
8

1
6
9

1
9
0

2
1
1

2
3
2

2
5
3

2
7
4

2
9
5

3
1
6

3
3
7

3
5
8

C
P

I

Number of steps

CFBS

0

2

4

6

8

10

12

14
1

2
4

4
7

7
0

9
3

1
1
6

1
3
9

1
6
2

1
8
5

2
0
8

2
3
1

2
5
4

2
7
7

3
0
0

3
2
3

3
4
6

3
6
9

3
9
2

C
P

I

Number of steps

Simics

0

2

4

6

8

10

12

14

1

2
0

3
9

5
8

7
7

9
6

1
1
5

1
3
4

1
5
3

1
7
2

1
9
1

2
1
0

2
2
9

2
4
8

2
6
7

2
8
6

3
0
5

3
2
4

C
P

I

Number of steps

MCCS

Fig. 8. CPI behavior of BT when run on a four-core processor

0

2

4

6

8

10

12

1

2
4

4
7

7
0

9
3

1
1
6

1
3
9

1
6
2

1
8
5

2
0
8

2
3
1

2
5
4

2
7
7

3
0
0

3
2
3

3
4
6

3
6
9

C
P

I

Number of steps

Simics

0

2

4

6

8

10

12

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1
3

1
2
7

1
4
1

1
5
5

1
6
9

1
8
3

1
9
7

2
1
1

2
2
5

2
3
9

C
P

I

Number of steps

MCCS

0

2

4

6

8

10

12

1

2
3

4
5

6
7

8
9

1
1
1

1
3
3

1
5
5

1
7
7

1
9
9

2
2
1

2
4
3

2
6
5

2
8
7

3
0
9

3
3
1

3
5
3

C
P

I
Number of steps

CFBS

Fig. 9. CPI behavior of CG when run on a four-core processor

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 11 21 31 41 51 61 71 81 91 101

C
P

I

Number of steps

CFBS

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 11 21 31 41 51 61 71 81 91 101

C
P

I

Number of steps

Simics

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 11 21 31 41 51 61 71 81 91 101 111

C
P

I

Number of steps

MCCS

Fig. 10. CPI behavior of Barnes when run on a four-core processor

0

1

2

3

4

5

6

7

8

1 15 29 43 57 71 85 99 113 127 141

C
P

I

Number of steps

CFBS

0

1

2

3

4

5

6

7

8

1 15 29 43 57 71 85 99 113 127 141

C
P

I

Number of steps

Simics

0

1

2

3

4

5

6

7

8

1 15 29 43 57 71 85 99 113 127 141

C
P

I

Number of steps

MCCS

Fig. 11. CPI behavior of Ocean when run on a four-core processor

130 M. Shantharam, P. Raghavan, and M. Kandemir

0

0.5

1

1.5

2

2.5

3

3.5

1 14 27 40 53 66 79 92 105 118

C
P

I

Number of steps

CFBS

0

0.5

1

1.5

2

2.5

3

3.5

1 16 31 46 61 76 91 106 121 136 151

C
P

I

Number of steps

Simics

0

0.5

1

1.5

2

2.5

3

3.5

1 15 29 43 57 71 85 99 113 127 141

C
P

I

Number of steps

MCCS

Fig. 12. CPI behavior of Raytrace when run on a four-core processor

0

0.2

0.4

0.6

0.8

1

FT BT CG Barnes Ocean Raytrace

Average Relative Error

MCCS CFBS

Fig. 13. Average relative error of benchmarks with respect to Simics

We see from Table 3 that CFBS takes the least time to simulate these benchmarks. We
also observe that simulation time of MCCS is dominated by the execution within Sim-
ics. For CFBS, the simulation time is calculated as the time required to run one iteration
of the application using Simics, as the rest of the simulation is done using curve fitting.
In Table 4, we report the speedup of our techniques over Simics. We observe that CFBS
model reduces the simulation time by as much as 13.6 times and 6.42 times on average
while MCCS model reduces the simulation time by as much as 2.37 times and 1.77
times on average.

Table 3. Time taken by simulators in minutes

Benchmark Simics MCCS CFBS

FT 1,245 524 (470 + 54) 190
BT 530 320 (280 + 40) 110
CG 410 176 (160 + 16) 30
Barnes 105 74 (70 + 4) 25
Ocean 113 100 (98 + 2) 55
Raytrace 170 104 (80 + 24) 25

Table 4. Speedup with respect to Simics

Benchmark MCCS CFBS

FT 2.37 6.55
BT 1.65 4.8
CG 2.32 13.6
Barnes 1.41 4.2
Ocean 1.13 2.05
Raytrace 1.63 6.8

Hybrid Techniques for Fast Multicore Simulation 131

6 Sensitivity Study

In this section, we conduct a sensitivity study, on the impact of the number of cores and
the instruction window size, on the accuracy of the CPI prediction. In our first study,
we consider the impact of changing a four-core base processor configuration to a one-
core processor configuration and an eight-core processor configuration. In our second
study, we increase the instruction window size to 20 million instructions and observe
its impact on prediction accuracy.

For our first sensitivity study, we simulate FT and Raytrace benchmarks on one-core
and eight-core processor configurations. Consider Figure 14, the plots on the left and
the center show the average relative error in CPI prediction for these benchmarks for a
one-core and eight-core processor configurations respectively. We observe that CFBS
method has a good prediction accuracy for both the benchmarks on one-core and eight-
core processor configurations. Notice that the prediction accuracy of MCCS for a one-
core processor is much higher than that for a eight-core processor for FT benchmark. We
attribute this higher prediction accuracy to a more consistent CPI behavior of FT within
its phases for a one-core processor. For FT, the accuracy of MCCS model is much better
for one and eight-core processors when compared to a four-core processor. We believe
this difference in accuracy is due to the way in which FT behaves on one, four and eight-
core processors. The behavior of FT on one and eight-core processors is favorable for
MCCS as we are able to easily capture the sub-phase CPI behavior. We note that by
having more sub-phases (interleavings), we would be able to get better accuracy for
four-core processors as well. The CFBS method has higher accuracy for one and eight-
core processors for both FT and Raytrace as these applications have repetitive codes
and our CFBS method is able to capture this repetitive behavior.

0

0.2

0.4

0.6

0.8

1

FT Raytrace

MCCS CFBS

0

0.1

0.2

0.3

0.4

0.5

0.6

FT Raytrace

MCCS CFBS

0

0.05

0.1

0.15

0.2

0.25

FT Raytrace

MCCS CFBS

Fig. 14. Average relative error of benchmarks with respect to Simics for a Left: one-core proces-
sor. Center: eight-core processor. Right: four-core processor when instruction window size is
set to 20 million instructions.

For our second sensitivity study, we change the size of instruction window from
10 million instructions to 20 million instructions. The rightmost bar-chart in Figure
14 shows the average relative error for FT and Raytrace benchmarks for a four-core
processor configuration. We observe that there is not much impact on the CPI behavior
prediction accuracy of our models by increasing the instruction window size. We can
observe this by comparing the right plot in Figure 14 with Figure 13.

132 M. Shantharam, P. Raghavan, and M. Kandemir

7 Related Work

For over a decade, computer architects have used software simulation techniques to
evaluate the future computer hardware. SimpleScalar [3] was one of the earliest simu-
lators used to simulate uniprocessor superscalar architectures. Some of the other flavors
of uniprocessor simulators used are PTLsim [24], a cycle accurate x86 microprocessor
simulator and SIMCA [16], a simulator for multithreaded computer architectures.

Recent advances in multicore architectures have led researchers to use simulators
that can model multicore architecture. SESC [5], is a cycle accurate multicore simula-
tor, while Simics [10], is a full system simulator that can be used to simulate multicores.
GEMS [9] is a Simics based multiprocessor simulator with focus on accurate perfor-
mance modeling. Due to the slow and complex nature of these cycle accurate and full
system simulators, new statistical and analytical performance modeling techniques have
emerged. Three such popular simulation techniques are SMARTS [11], Simflex [13],
and Simpoint [4]. SMARTS framework applies statistical sampling to microarchitec-
ture simulation. It samples and simulates a subset of benchmark’s instructions to esti-
mate the performance of the entire benchmark. Simflex use Simics to provide functional
simulation and applies SMARTS methodology to do the sampling. It leverages Simics’s
checkpointing capability to store the state of simulation. A large checkpoint library is
created by checkpointing at various points during the execution of the entire program
in Simics. Such libraries are required for every <simulated configuration, benchmark>
pair. These libraries are sampled to find the checkpoints that needs to be simulated. Al-
though Simflex is statistically rigorous and accurate, it is rigid in terms of simplicity of
use and requires a lot of memory to store the checkpoint libraries. We believe that for
good quick estimate of performance, our techniques, CFBS and MCCS are more suited
as they are easy to implement and have no extra memory requirements. SimPoint uses
offline algorithms (clustering techniques) to detect phases in a program. This classifi-
cation helps to choose simulation points that is representative of the phases, thereby,
reducing the overall simulation time. This approach is independent of the architecture
on which the program is run. We believe that it would be a challenge to use SimPoint
for multicore simulation of applications (like FT) that have different runtime behavior
based on the number of cores on which it is run.

Other simulation techniques to speedup the simulation include, HLS [8], a hybrid sim-
ulator that uses statistical profile of applications to model instruction and data streams,
and MonteSim [23,22], a predictive Monte Carlo based performance model for in-order
microarchitectures. However, these simulators were developed for uniprocessor architec-
ture. Our methods differ from HLS in the way we profile applications, are generic and
can be applied to multicores. Our predictive model is similar to [23] in some aspects like
the use of Monte Carlo technique, however unlike MonteSim, we can use our methods
to model multicore processors.

8 Conclusions and Future Work

We have presented two hybrid models, MCCS and CFBS, to address the challenge of
fast evaluation of design-tradeoffs for multicore architectures. Our experimental analy-
sis indicates that MCCS can reduce simulation time by as much as a factor of 2.37, with

Hybrid Techniques for Fast Multicore Simulation 133

a speedup of 1.77 on average compared to Simics. However, its average relative error is
rather large at 32%. The results also reveal that CFBS can reduce simulation time by as
much as a factor of 13.6, with a speedup of 6.24 on average. Additionally, the observed
average relative error in CPI compared to Simics is significantly less at 2%.

Our results show that CFBS performs consistently better than MCCS in terms of both
accuracy and speedup. One reason for this is our target application domain, namely, sci-
entific applications. Since most of these applications have repetitive (iterative) codes,
CFBS performs better as it is able to capture the entire phase behavior while MCCS
only predicts the entire phase behavior based on partial phase results. Although MCCS
performs worse in both speedup and accuracy, it has the potential of being more generic
that CFBS model. For example, if the CPI behavior of a subroutine varies across differ-
ent iterations, we believe that MCCS method would perform better than CFBS method.
As part of future work, our initial plan is to investigate non-scientific applications to
test the applicability of these methods.

References

1. From a few cores to many: A tera-scale computing research overview. Technical report, Intel
2. Teraflops research chip,

http://techresearch.intel.com/articles/Tera-Scale/1449.htm
3. Austin, T., Larson, E., Ernst, D.: Simplescalar: An infrastructure for computer system mod-

eling. Computer 35(2), 59–67 (2002)
4. Perelman, E., et al.: Using simpoint for accurate and efficient simulation. SIGMETRICS

Perform. Eval. Rev. 31(1), 318–319 (2003)
5. Renau, J., et al.: SESC simulator (January 2005), http://sesc.sourceforge.net
6. Lauterbach, et al.: Ultrasparc-iii: a 3rd generation 64 b sparc microprocessor. In: ISSCC

2000. IEEE International on Solid-State Circuits Conference, 2000. Digest of Technical Pa-
pers., pp. 410–411 (2000)

7. Rosenblum, M., et al.: Complete computer system simulation: the simos approach. IEEE
Parallel and Distributed Technology: Systems and Applications 3(4), 34–43 (Winter 1995)

8. Oskin, M., et al.: Hls: combining statistical and symbolic simulation to guide microprocessor
designs. SIGARCH Comput. Archit. News 28(2), 71–82 (2000)

9. Martin, M.M.K., et al.: Multifacet’s general execution-driven multiprocessor simulator
(gems) toolset. SIGARCH Comput. Archit. News 33(4), 92–99 (2005)

10. Magnusson, P.S., et al.: Simics: A full system simulation platform. Computer 35(2), 50–58
(2002)

11. Wunderlich, R.E., et al.: Smarts: accelerating microarchitecture simulation via rigorous sta-
tistical sampling. SIGARCH Comput. Archit. News 31(2), 84–97 (2003)

12. Woo, S.C., et al.: The splash-2 programs: characterization and methodological considera-
tions. In: ISCA 1995: Proceedings of the 22nd annual international symposium on Computer
architecture, pp. 24–36 (1995)

13. Wenisch, T.F., et al.: Simflex: Statistical sampling of computer system simulation. IEEE
Micro. 26(4), 18–31 (2006)

14. Sherwood, T., et al.: Automatically characterizing large scale program behavior. In:
ASPLOS-X: Proceedings of the 10th international conference on Architectural support for
programming languages and operating systems, pp. 45–57. ACM, New York (2002)

15. Heath, M.T.: Scientific computing: An introductory survey (2002)

http://techresearch.intel.com/articles/Tera-Scale/1449.htm
http://sesc.sourceforge.net

134 M. Shantharam, P. Raghavan, and M. Kandemir

16. Huang, J., Lilja, D.: An efficient strategy for developing a simulator for a novel concurrent
multithreaded processor architecture. In: MASCOTS 1998: Proceedings of the 6th Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer and Telecommunica-
tion Systems, Washington, DC, USA, p. 185. IEEE Computer Society, Los Alamitos (1998)

17. Kahle, J.: The cell processor architecture. In: MICRO 38: Proceedings of the 38th annual
IEEE/ACM International Symposium on Microarchitecture, p. 3 (2005)

18. NASA. Nas benchmark suite,
http://www.nas.nasa.gov/Resources/Software/npb.html

19. Pai, V.S., Ranganathan, P., Adve, S.V.: Rsim: Rice simulator for ilp multiprocessors.
SIGARCH Comput. Archit. News 25(5), 1 (1997)

20. Intel Core Duo processor Frequently Asked Questions, http://www.intel.com/
support/processors/mobile/coreduo/sb/CS-022131.htm

21. UltraSPARC T1 Niagara Specifications,
http://www.sun.com/processors/UltraSPARC-T1/specs.xml

22. Srinivasan, R., Cook, J., Lubeck, O.: Ultra-fast cpu performance prediction: Extending the
monte carlo approach. In: SBAC-PAD 2006: Proceedings of the 18th International Sympo-
sium on Computer Architecture and High Performance Computing, Washington, DC, USA,
pp. 107–116. IEEE Computer Society, Los Alamitos (2006)

23. Srinivasan, R., Lubeck, O.: Montesim: a monte carlo performance model for in-order mi-
croachitectures. SIGARCH Comput. Archit. News 33(5), 75–80 (2005)

24. Yourst, M.T.: Ptlsim: A cycle accurate full system x86-64 microarchitectural simulator.
In: IEEE International Symposium on Performance Analysis of Systems Software, 2007.
ISPASS 2007, April 2007, pp. 23–34 (2007)

http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.intel.com/support/processors/mobile/coreduo/sb/CS-022131.htm
http://www.intel.com/support/processors/mobile/coreduo/sb/CS-022131.htm
http://www.sun.com/processors/UltraSPARC-T1/specs.xml

	Hybrid Techniques for Fast Multicore Simulation
	Introduction
	Experimental Setup
	Monte Carlo Co-Simulation (MCCS)
	Monte Carlo Predictive Model
	Understanding Application Performance Using Windowed CPI
	MCCS Simulation Flow

	Curve Fitting Based Simulation (CFBS)
	Experimental Evaluation
	Sensitivity Study
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

