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Abstract. This paper proposes a novel replication architecture for stateful ap-
plication servers that offers an integrated solution for fault-tolerance and load-
distribution. Each application server replica is able to execute client requests and
at the same time serves as backup for other replicas. We propose an effective load
balancing mechanism that is only load-aware if a server is close to become over-
loaded. Furthermore, we present transparent reconfiguration algorithms that guar-
antee that each replica has the same number of backups in a dynamic environment
where replicas can join or leave at any time. Our evaluation shows that our approach
scales and distributes load across all servers even in heterogeneous environments
while keeping the overhead for fault-tolerance and load-balancing small.

1 Introduction

Application servers (AS) have become a prevalent building block in current information
systems. The AS executes the application programs and maintains volatile data, such
as session information, i.e., the server is stateful.AS often execute crucial and heavy
loaded tasks, and have to handle a large number of concurrent clients, while at the
same time have to provide short response times and high reliability. Both requirements
can be achieved via replication. Fault-tolerant replication solutions are proposed, e.g., in
[1,2,3], while scalability solutions are presented in [4]. However, little research has been
performed on providing a combined solution both for scale-out and for high reliability.
Similarly, existing AS products such as JBoss and WebLogic offer separate replication
solutions for fault-tolerance and load-balancing each having its own setup.

In order to achieve scalability, load balancing algorithms use a cluster of AS repli-
cas, each equipped with the same application software, and distribute request execution
across the replicas. Ideally, the more replicas, the higher the maximum throughput the
cluster can achieve. In this paper, we refer to a group of replicas executing requests
as the load distribution group (LDG). In contrast, fault-tolerance algorithms use server
replicas to mask the failures of individual replicas. Most commercial solutions let a pri-
mary replica execute requests, while the other replicas are backups. The primary sends
data changes to backups at critical time points. If the primary fails, a failover procedure
makes one of the backups the new primary and clients are automatically reconnected to
it. For fault-tolerance purposes, it is typically enough to have one or two backups. We
refer to a group of one primary and its backups as fault-tolerance group (FTG).
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A simple approach to combine load balancing and fault tolerance together is to
distribute the workload over a set of server replicas, each of them having dedicated
backups. However, since backup tasks have typically a low overhead, capacity of the
backups is wasted. Furthermore, adding a new replica to handle increased load requires
to add backups, and a failed machine needs to be replaced with a new machine to handle
future crashes. In order to tackle this problem, we present a unified framework where
each replica executes its own client requests and at the same time is backup for other
servers. All replicas of an AS cluster belong to a single LDG and can execute client
requests. At the same time, each replica is primary of a (small) FTG and is backup in
some other FTGs. Our unified solution distributes load across all replicas using a simple
and efficient load balancing mechanism that is only load-aware if a server is threaded
to become overloaded, handles failures transparently using a dynamic reconfiguration
mechanism that automatically guarantees that each replica has a sufficient number of
backups at any time, and can easily grow and shrink with the demands.

We use the ADAPT-SIB fault-tolerance algorithm [5,3] that provides stateful ap-
plication server replication with strong consistency properties. However, our architec-
ture is also adaptable to other fault-tolerance algorithms. We implemented our solution
into the JBoss application server. Our experiments show that the approach efficiently
combines fault-tolerance and scalability tasks.

2 Background

2.1 Stateful Application Server

In an AS, the business logic is modularized into different components (e.g., Enterprise
JavaBeans) as depicted in Figure 1(a). Volatile components maintain session informa-
tion and other related information. They are typically associated with a single client
(e.g., Stateful Session Beans). Their state is lost when the AS crashes. In contrast, per-
sistent components maintain data that is loaded from the databases (e.g., Entity Beans).

Client requests are calls to interface methods of components. Often, a client has to
first connect to the server and after that, a session is created. The volatile components
of this client are associated with this session. A client may usually only submit a re-
quest once it has received a response for its previous request. Therefore, in general, no
concurrency control is needed for volatile components. When persistent components or
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the backend database are accessed, requests are normally executed within a transaction
that isolates the operations of concurrent transactions.

2.2 Group Communication

We use a group communication system (GCS) for communication where the AS replicas
are the members of a GCS group. A member can multicast a message to all group mem-
bers (including itself) or send point-to-point messages. The multicast we use provides
uniform-reliable delivery. It guarantees that if any member receives a message (even
if it fails immediately afterwards) all members receive the message unless they fail.
Furthermore, we use multicasts that either deliver messages in FIFO order (messages
of the same sender are received in sending order), or in total order (if two members
receive messages m and m′, they both receive them in the same order). Furthermore,
GCS maintains a view of the currently connected members. Whenever the view config-
uration changes (through explicit joins or leaves, or due to crashes), the GCS informs all
membes by delivering a view change message with the new view. Many GCS provide
virtual synchrony [6]: If members p and q receive both first view V and then V ′, they
receive the same set of messages while members of V .

2.3 ADAPT-SIB Replication Algorithm

The basic fault-tolerance mechanisms used in our system are based on the ADAPT-SIB
algorithm [5,3]. We describe the main steps of ADAPT-SIB necessary to understand
the rest of the paper. Figure 2 shows the architecture. ADAPT-SIB assumes there is one
primary replica and several backup replicas. All join a single fault-tolerance group FTG
(one GCS group). Each AS replica has a replication manager (RM) that executes the
replication algorithm. At the client, there is a client replication manager (CRM).

The CRM has a list of all server replicas. It intercepts each client request and directs
it to the current primary replica. If the primary fails, the CRM finds the new primary and
resubmits the last request to the new primary if it did not receive a response before the
crash. At the primary replica, each request is executed within a transaction. At commit
time of a transaction, a checkpoint message containing changes performed on volatile
components is multicasted with uniform reliable delivery to all replicas in the FTG. If
the primary fails, all active database transactions are aborted by the database system.
All remaining backup replicas in the FTG receive a view change message from the
GCS and then one of them becomes the new primary. The new primary reconstructs
the correct state of volatile components from the checkpoint messages. Then, the new
primary receives resubmitted requests and new requests. ADAPT-SIB ensures that the
state of the AS and the database are consistent and that the new primary does not execute
any request twice. Previously failed or completely new replicas can join in the FTG at
runtime. A joining replica receives all checkpoint messages from one existing replica
in the FTG and then performs backup tasks. The cost at the backups of receiving the
state changes and processing them is only 5-10% of the costs at the primary to execute
the original requests. Thus, using ADAPT-SIB for fault-tolerance, each replica has the
potential to act as a primary and also as backup for some others.
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3 Unified Architecture

In order to exploit the resources of all replicas, we propose an architecture that allows to
distribute client requests across all replicas in a cluster and at the same time guarantees
fault tolerance using the ADAPT-SIB protocol. All replicas in the cluster are members
of a single load distribution group LDG. Each replica is primary in exactly one fault-
tolerance group FTG, referred to as its primary FTG, and thus, there are as many FTGs
as there are replicas in the system. Furthermore, each replica is backup in m FTGs,
referred to as the replica’s backup FTGs. As a result, each FTG has m backups. We refer
to this as the m/m property. This property allows for a simple, yet powerful automatic
reconfiguration mechanism, and also helps in load distribution. In the following, we
first discuss how the system starts up, then we explain how load balancing is done, and
finally talk about reconfigurations.

3.1 Cluster Initialization

At initialization, one has to decide on the number m of backups in an FTG. Furthermore,
one has to indicate the initial number n of replicas in the cluster. The cluster size may
shrink or increase later dynamically, but m remains fixed.

Figure 3 shows the final setup after initialization. Each replica uses its address as
a unique identifer. At each replica LBM refers to a Load Balancing Manager (LBM),
PRM to the primary replication manager of the primary FTG, and BRMS refers to
the array of backup replication managers for the backup FTGs. When a replica starts
up, its LBM first joins the LDG. Once all n replicas have joined, each LBM multicasts
its replica identifier using total-order, uniform-reliable delivery. Each LBM receives
the messages in the same order and stores the identifiers in an ordered list, called the
replica list RL according to the delivery order. Each replica in the system is assigned
an order number i, 1 ≤ i ≤ n, which is the position of the replica in the replica list
RL. We refer to the replica with order number i as ri. Note that while the identifier of a
replica does not change during its lifetime, the order number might change, as we will
see later. Once ri has determined its order number i, it joins fault-tolerant group FTGi

as primary. If i > m, it furthermore joins FTGi−m to FTGi−1 as backup. A replica
with order i ≤ m joins FTGn−m+i to FTGn and FTG1 to FTGi−1 as backup. For

LBM

BRMS

RM

RM

PRM

Container

Comp
T
M

LBM

BRMS

RM

RM

PRM

Container

Comp
T
M

LBM

BRMS

RM

RM

PRM

Container

Comp
T
M

FTG

FTG

LDG

...

Client Client Client

Fig. 3. Unified Architecture



182 H. Wu and B. Kemme

LDG

FTG_1

FTG_2

FTG_3

FTG_4

FTG_n-4

r1 r2 r3 r4 rnrn-1rn-2

FTG_n-3

FTG_n-2

FTG_n-1

FTG_n

FTG_n-1

FTG_n

...

Fig. 4. Cluster Initialization

LDG

FTG_j FTG_j+3

rj rj+1 rj+2 rj+3 rj+4 rj+5

Forward

Fig. 5. Forwarding a request

instance if m = 2, then r3 joins FTG1 and FTG2, r2 joins FTGn and FTG1, and r1

joins FTGn−1 and FTGn. Figure 4 depicts this circular setup of FTGs.

3.2 Load Balancing

Simple Load Distribution. When a client connects to the system, a session on one pri-
mary replica is created, and all requests within this session are handled by this replica.
This guarantees that each request sees the current session state. Thus, load balancing
is performed at a connection time. It goes through two phases. The client has a pre-
defined replica list CL with potential server replicas (received, e.g., when looking up
the service on a registry). It submits connection requests to these replicas until it re-
ceives a response. When an available replica ri receives such a request it becomes the
load-balancer for this request. The LBM of ri randomly decides on a replica rj from its
replica list RL to serve the client, and returns the client replication manager CRM ob-
ject to the client. The message piggybacks a failover list containing the identifiers of all
members of FTGj (derived from replica list RL) and indicates that rj is the primary.
The failover list FL is used by the client CRM for fault tolerance, and is described
in more detail in Section 3.3. In the second phase, the newly installed CRM sends a
session request to rj . Then rj accepts client requests within the session.

Our load-balancing algorithm is very efficient, as the message overhead for the ses-
sion setup is the same as in standard AS architectures involving one message round
for the connection request (with ri), and one for session creation (with rj). Scheduling
decisions are made locally at the server site without the need to exchange and maintain
load information. The replica list CL does not need to be accurate or complete as the
sessions themselves are equally distributed among all active replicas.

Load Forwarding. Random replica assignment, however, does not work well in hetero-
geneous environments or if request execution times are not uniform. For example, if a
server gets a few heavy requests it will be temporarily overloaded and any further re-
quest will deteriorate the performance. We address this issue with a simple but effective
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first-local-then-forward (FLTF) mechanism which leads to request forwarding if the
load of a replica is above a given threshold. Load could be measured as memory usage,
CPU usage, response time, or the number of connected clients. We refer to a replica
with a load below the threshold as a valid replica.

When the LBM of replica rj receives a client session request and its load is below
the threshold, it serves the client directly as described above. Otherwise, rj multicasts a
load query message lqm to all replicas in FTGj in order to find a valid replica. (see left
ellipse in Figure 5 ). Upon receiving lqm a backup returns a positive answer if its load
is below the threshold. rj chooses the first rk to answer as the one to serve the client.
It returns to the CRM the list of replicas belonging to FTGk. The CRM refreshes its
local failover list FL, and sends a session request to rk . In case of isolated overloads,
contacting m other nodes will likely find a node that can accept new clients. However,
if there is no positive answer among the backups, rj sends a forward message to the
replica with the smallest order number larger than any order number in FTGj , i.e.,
r(j+m+1)%n. r(j+m+1)%n now repeats the process, sending a new load query message
lqm in its own primary FTG(j+m+1)%n. Figure 5 shows how a forward is sent to the
primary of FTGj+3 if m = 2. If a valid replica is found, r(j+m+1)%n returns the
information to ri so that it can forward the relevant replica list to the client. Otherwise,
an additional forward could take place. If after a maximum number of T iterations
no valid replica is found, a negative message is sent to the originator rj which either
accepts or refuses the client. If T is set 0, then no forward message is sent at all. Setting
T low makes sense because if all nodes in rj’s neighborhood are saturated, it is likely
that the entire system is close to saturation and further forwarding will not help.

Discussion. A main benefit of our load distribution algorithm is that it is purely dis-
tributed without any central controller and can be easily implemented. Load messages
are only sent if a node is overloaded, load is checked in real time, and replicas can
individually decide to take on further load or not. It does not affect the fault-tolerance
algorithm but takes advantage of the FTG infrastructure.

One question is how often one has to forward to find a lightly loaded replica. The
probability of finding a valid replica within the m backup replicas of the local FTG is
equal to the probability of finding a valid replica within any m replicas in the cluster. If
there are k valid replicas randomly distributed in the cluster, the probability p of finding
one of the k valid replicas within the m backup replicas is p = 1 − (

n−m−1
k

)
/
(
n−1

k

)
.

Since each forward searches m+1 replicas (a new FTG), the probability p of finding one
of k valid replicas within the m backups of the initiator and T further forwards is p =
1−(

n−m−1−T∗(m+1)
k

)
/
(
n−1

k

)
. Assume the cluster has 100 replicas and m = 2. With 50

valid replicas and T = 1 we find a valid replica with more than 97% probability. With
only 20 valid replicas and T = 3, the probability is 92.8%. Thus, this simple mechanism
provides a high success rate even for highly loaded clusters with low message overhead.

3.3 Reconfiguration

In this section, we show how the system automatically maintains the m/m property
(each FTG has m backups, each replica is backup of m FTGs) which guarantees that
each replica has at any time enough backups.
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Server crash. When a replica ri fails it leaves FTGi, and a new primary has to be found
for ri’s clients. Furthermore ri is removed as a backup from m FTGs. Thus, these FTGs
need new backups. For simplicity of notation the following discussion assumes that a
replica ri fails where i > m and i + m < n.

The failover process at the server side is slightly different from the original ADAPT-
SIB protocol. No new primary can be built for FTGi, since the backups in FTGi have
their own primary FTGs. Instead, the clients associated with FTGi will be migrated to
FTGi+1, and FTGi is removed. The main reconfiguration steps are as follows.

– ri+1, which is a backup in FTGi, becomes the new primary for ri’s clients. It
first performs the failover for the sessions of clients in FTGi as described in
ADAPT-SIB. Then, it makes these clients part of FTGi+1. Finally, it leaves FTGi.

– The other backups in FTGi (ri+2 to ri+m) must also migrate the session informa-
tion of the old clients of FTGi to FTGi+1. After the migration, they also leave
FTGi. As a result, FTGi does not have any member anymore.

– ri+m+1 was not member of FTGi but now needs to receive the session information
of the clients that were migrated from FTGi to FTGi+1. The primary of FTGi+1

sends this information to ri+m+1.
– Since replicas ri+1 to ri+m have left FTGi, they are now backups for only m-1

FTGs. Furthermore, FTGi−m to FTGi−1 only have m-1 backups since ri was
removed from these groups. To resolve this, ri+1 joins FTGi−m as backup, ri+2

joins FTGi−m+1, etc, as the joining process of new replicas described in
ADAPT-SIB.

– Finally, each load balancing manager LBM removes ri from its replica list RL,
and decreases the order numbers of replicas ri+1 to rn by one.

Server recovery. When a new or failed replica joins in a cluster of size n, it first joins
the single load distribution group LDG, and all replicas are notified about this event.
Each replica adds the new replica with order number n + 1 to its replica list RL and
considers it in its load-balancing task. rn+1 receives the replica list RL from a peer
replica. According to our setting, rn+1 must have a primary FTG and m backup FTGs.

– rn+1 creates a new FTGn+1 and joins it.
– rn+1 joins FTGn−m+1 to FTGn as backups. These FTGs have now m + 1

backups.
– Now, r1 to rm leave FTGn−m+1 to FTGn respectively. The FTGs are now back

to having m backups.
– Finally, r1 to rm join the new FTGn+1. They have again m backup FTGs and

FTGn+1 has m backups. The recovery is fast, since this group is new.

The reconfiguration is complete and rn+1 starts accepting client requests.

4 Experiments and Evaluation

We integrated our approach into the JBoss application server (v. 3.2.3) [7]. For this
paper, we use a micro benchmark where each client request performs operations on
stateful session beans associated with the client but the database is not accessed. This
allows us to isolate the replication effects on the AS. Clients connect to the system
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and then run for 10 seconds continuously submitting requests. All requests trigger trans-
actions with similar load. Further experiments can be found in [8]. Unless otherwise
stated, experiments were performed on a cluster of 64-bit Xeon machines (3.0 GHz and
2G RAM) running RedHat Linux. As GCS we use Spread [9]. In all our settings, each
FTG consists of one primary and two backups.

4.1 Experiment 1: Basic Performance

We have a first look at the performance of our unified architecture when no replicas
leave or join the system. In the figures, JBoss refers to a standard single-node non-
replicated JBoss application server without fault-tolerance. ADAPT-SIB refers to a
system running the ADAPT-SIB algorithm, i.e., there is one fault-tolerance group FTG
but no load distribution group LDG. ADAPT-LB refers to the approach proposed in
this paper with one LDG using our load-balancing approach and several FTGs running
ADAPT-SIB. JC/RoundRobin refers to a replicated cluster using JBoss’ own round-
robin based load-balancer. This configuration does not provide any fault-tolerance.

Figure 6 shows response times with increasing number of clients injected in the
system per second for three machines. In the non-replicated JBoss and ADAPT-SIB
clients compete soon for resources and response times deteriorate quickly. ADAPT-SIB
has higher response times than a non-replicated JBoss, since the primary has to perform
the replication. In contrast, ADAPT-LB and JC/RoundRobin have low response times
up to 15 clients due to load distribution. Each node is less loaded and can provide
faster service. While ADAPT-LB has higher response times than JC/RoundRobin the
difference is smaller than between ADAPT-SIB and the non-replicated JBoss, because
ADAPT-LB is able to distribute the fault-tolerance overhead across all replicas.

Scalability is further analyzed in Figure 7 which shows that the throughput for
ADAPT-LB and JC/RoundRobin increases linearly with the number of replicas. Due
to fault-tolerance activity on each node, ADAPT-LB achieves less throughput than
JC/RoundRobin. But even JC/RoundRobin does not provide ideal throughput since
load-balancing has its own overhead.

In summary, ADAPT-LB truly provides both fault-tolerance and scalability.
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4.2 Experiment 2: Heterogeneity

Heterogeneity is a challenge for load-balancing techniques. We first analyze
the impact of heterogeneous hardware by replacing half of the machines with
PIII machines (850 MHz and 256M RAM). Figure 8 shows the maximum
achievable throughput with increasing number of machines for ADAPT-LB with
forwarding (ADAPT-LB/FLTF), ADAPT-LB using only random load-balancing
without forwarding (ADAPT-LB/Random), and JBoss’ round-robin load-balancer
(JC/RoundRobin). In general, the throughput is lower than in the homogeneous envi-
ronment (Fig. 7), since half of the machines are now weaker. ADAPT-LB/Random is the
worst because random assignment ignores heterogeneity and fault-tolerance adds over-
head. ADAPT-LB/FLTF and JC/RoundRobin have similar performance despite the fact
that ADAPT-LB has the fault-tolerance overhead. A detailed analysis has shown that,
compared to JC/RoundRobin, ADAPT-LB/FLFT has lower throughput on the weak and
higher throughput on the strong nodes. This is because with ADAPT-LB/FLFT weak
nodes forward requests that are then executed by the strong nodes. Thus, ADAPT-
LB/FLTF compensates the overhead of fault-tolerance by a smarter load-balancing
strategy which assigns more tasks to the stronger nodes.

Another type of heterogeneity are dynamic workload changes. In the next test, we
use an additional very heavy client transaction with an average response time of 2000
ms to simulate the heterogeneous workload. We only compare ADAPT-LB/FLTF and
JC/RoundRobin. At the beginning of this test, a cluster consisting of 6 identical ma-
chines runs the micro benchmark for 30 seconds. Then we artificially inject the heavy
transaction into the system. We refer to the machine executing the heavy transaction as
HC. The other are denoted as LC. Figure 9 has as x-axis time slots of 100 ms. The
heavy transaction starts at timeslot 5. Before injecting the heavy transaction, HC and
LC have the same response times which are higher for ADAPT-LB because of the fault-
tolerance overhead. Using JC/Round-Robin, the HC response times increase to around
400 ms after the injection because the HC machine becomes saturated. The response
times on the LC group remain the same because they are not affected. Using ADAPT-
LB, response times on the HC machine increase for the first 5 time slots after the
heavy transaction is injected. This represents transactions of clients that were already
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assigned to HC when the long transaction arrived. Then there is a long gap, since HC
does not accept any further clients anymore according to the forwarding strategy. At
timeslot 27 the long transaction finishes (with a long response time). After that HC ac-
cepts clients providing standard response times for them. While the heavy transaction
is running on HC we observe longer response times at the LC machines because HC
redirects clients to them, and thus they are more loaded. In total, response times are
less affected with ADAPT-LB than with JC/RoundRobin which has unacceptable high
response times for some of the clients.

Clearly, our approach can quickly respond to the temporary overload of individual
machines. The extra overhead only has to be paid when overload occurs.

4.3 Experiment 3: Failover and Recovery

We now show the behavior of the system during and after reconfiguration. A cluster of
6 replicas (r1, ..., r6) runs the micro benchmark for about 30 seconds when replica r3

crashes. We distinguish three types of replicas. NP (new primary) indicates the replica
r4 that takes over the clients of the failed replica r3. B indicates replicas that have
to reconfigure their backups (r5 and r6). NI indicates all other replicas on which the
failure has no impact (r1 and r2). Figure 10(a) has as x-axis time slots of 100 ms, and
as y-axis the average response time within a time slot. The crash occurs at time slot 5.

Before the crash, the average response time is similar in each group. After the crash,
the response time on the new primary NP drastically increases because it requires
considerable resources to perform the failover. This process takes about 300-400 ms.
After that, the average response time is still higher than on the other groups because NP
has now double the clients. The response time in the replicas that have to reconfigure
their backups (B) also increases (it shortly doubles) because the state transfer to the
new backups takes some of the resources. The recovery process to become a backup
takes less than 100 ms. However, the response time on B remains higher and actually
also increases on NI for which no reconfiguration is necessary. The reason is that there
is now one less replica in the system to execute requests. Furthermore, since NP is
still higher loaded, the replicas in B and NI accept more of the newly injected clients.
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Eventually, once NP has stabilized, the system becomes balanced again. The average
response time on all remaining replicas converges eventually to the same value. This
value is now higher because there is one less replica in the system to serve requests.

We further conducted a test where we added a 7th replica to a running system. The
join shortly doubled the response times of those clients that were connected to replicas
who had to change their FTGs. But the system reconfigured in less than 400 ms. After
that response times are generally lower as load was now distributed over more replicas.

As a final experiment, we compare ADAPT-LB with an alternative solution. Us-
ing JBoss’ round-robin architecture, when a replica crashes, each client originally con-
nected to the failed replica connects to any of the correct replicas and resubmits all
requests from the beginning of the session. We call this solution the re-execution so-
lution. Note that this only works correctly if the requests do not trigger changes on
permanent components because these changes are already in the database and should
not be applied again. We again use 6 machines and crash one replica at time slot 5. This
time, we group response times by client type. FC clients were originally connected
to the crashed replica, and NFC are all other clients. Figure 10(b) shows the average
response time over time. In ADAPT-LB, one replica takes all FC clients (and has ad-
ditionally NFC clients). As long as this new primary performs failover, the FC are
blocked. Therefore, there is a gap for FC clients where no response times are mea-
sured, and once execution resumes there is a peak in average response times. NFC
clients are also affected, but much less (as discussed before). Response times for both
FC and NFC quickly go back to normal levels. As long as the new primary is more
loaded, the forwarding strategy distributes new clients to other replicas.

In the re-execution solution, re-executing the historical requests is a heavy task that
takes place at all replicas. For FC, the replay takes at least 10 time slots where no
response is created. But response times stay high for all clients for a long time and only
go down gradually because the machines are overloaded with the replay process. A peak
in the graph of the FC clients occurs when one of them finishes the failover process as
this is the time response times are measured. This shows that if replicas should be used
for both load distribution and fault-tolerance then it is paramount to have a fast failover
procedure as provided by ADAPT-SIB in order to keep the system responsive during
failover times. A replay solution seems too expensive.

In summary, our approach can handle failures and recovery transparently and dynam-
ically. Reconfiguration affects the client response times only shortly, and is relatively
localized to few machines.

5 Related Work

Load balancing and fault-tolerance have traditionally be handled as orthogonal issues,
and research on one topic usually does not attempt to solve the other. For fault tolerance
of application servers, most industrial (e.g., JBoss, Weblogic or WebSphere) and many
research solutions (e.g., [2,3] use the primary-backup approach.

Typical load balancing solutions of application or web servers use a central load bal-
ancer. As we have seen, content-blind policies [10], such as Random or Round Robin do
not work well in heterogeneous environments. Content-aware policies (e.g., [4,11,12]
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require some knowledge about the environment, such as load or access patterns which
can have considerable overhead. In contrast, our approach is purely distributed, does
not maintain state information, has little overhead, and is easy to implement.

Only a few approaches consider both load distribution and fault-tolerance. Singh
et al. [13] propose a system that merges the Eternal fault tolerance architecture [1]
and the TAO load balancer [4]. A similar architecture is used in [14]. All servers in
a cluster are partitioned to several disjoint FTG groups. Only the primary server in
each replica group is used for load balancing. Moreover, these solutions do not address
reconfiguration problems. [15] organize replicas in a chain and execute updates on the
head (who then propagates the changes down the chain) while reads are executed on the
tail. However, client requests are distributed over head and tail which his problematic
for stateful application servers. Also, not all replicas are evenly utilized.

Scalability and fault-tolerance is also an issue in file-systems. For instance, Coda [16]
also distributes load over servers and uses replication for availability. But files are
always persistent and there is no backend database. Also, Coda does not follow the
primary-backup replication but clients take care to update all copies.

6 Conclusion

This paper describes a new replication architecture for stateful application servers that
offers both fault-tolerance and load balancing in a single integrated solution. Replica-
tion is completely transparent to the clients, all resources in the system are used, and
the system requires little intervention by administrators. The solution is simple to im-
plement yet powerful. The architecture is completely distributed. Our implementation
shows that our approach increases the scalability even in heterogenous environments,
and provides dynamic reconfiguration in a dynamic environment with little overhead.
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