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Abstract. We consider approaches that allow task migration for scheduling re-
current directed-acyclic-graph (DAG) tasks on symmetric, shared-memory mul-
tiprocessors (SMPs) in order to meet a given throughput requirement with fewer
processors. Within the scheduling approach proposed, we present a heuristic
based on grouping DAG subtasks for lowering the end-to-end latency and an al-
gorithm for computing an upper bound on latency. Unlike prior work, the purpose
of the grouping here is not to map the subtask groups to physical processors, but
to generate aggregated entities, each of which can be treated as a single schedu-
lable unit to lower latency. Evaluation using synthetic task sets shows that our
approach can lower processor needs considerably while incurring only a mod-
est increase in latency. In contrast to the work presented herein, most prior work
on scheduling recurrent DAGs has been for distributed-memory multiprocessors,
and has therefore mostly been concerned with statically mapping DAG subtasks
to processors.

1 Introduction

Symmetric, shared-memory multiprocessor (SMP) systems, including those based on
multicore processors, are now mainstream. With Moore’s law manifesting in the form of
increasing number of processing cores per chip (as opposed to faster individual cores),
only applications with parallelism and to which the available processing resources can
be allocated intelligently are likely to witness processing speed-ups. Some applications
that can benefit from the current and emerging SMPs include image and digital signal
processing systems, deep packet inspection in computer networks, etc.

Several applications like those specified above can be modeled as directed-acyclic-
graphs (DAGs), also referred to as task graphs. In a task graph, nodes denote subtasks,
and edges, the order in which subtasks should execute on a given input. A simple DAG
with six nodes, whose weights denote their execution times, is shown in Fig. 1. Path
branches and merges in the DAG are assumed to have fork and join semantics; branches
therefore provide spatial concurrency. External inputs to some of these systems are re-
current, arriving periodically, such as sampled radar pulses fed into an embedded signal
processing system at a specified rate. The external input rate dictates the throughput that
should be met. In some systems, processing of later inputs may overlap that of earlier
ones, allowing subtasks to be pipelined and enabling temporal concurrency. A deadline
may also be imposed on the end-to-end latency incurred in processing any given input.
Scheduling such recurrent DAGs with spatial and temporal parallelism on SMPs is the
subject of this paper.
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The problem of scheduling DAGs on multiprocessors has received considerable at-
tention. Much of the early work was limited to scheduling a single DAG instance, while
some later and recent work deals with recurring instances. This later work is how-
ever focused on distributed-memory multiprocessor (DMM) platforms, on which inter-
processor communication and migration costs can be significant. Hence, most of prior
work statically maps subtasks onto processors and executes each subtask on its assigned
processors only.

Inter-processor communication and migration costs are, in general, less of an issue
on SMPs with uniform memory access times, and, in particular, almost negligible on
multicore processors with shared caches [6]. Therefore, techniques proposed in the con-
text of DMMs may be overkill for SMPs and need reevaluation for SMPs. An example
of the latter class of processors is Sun’s eight-core UltraSPARC T1 Niagara chip, whose
cores all share a common L2 cache. Also, the number of cores per chip is expected to
increase with passing years. In light of these developments, we consider a more flex-
ible scheduling approach in which a given instance or different instances of a subtask
may execute on different processors, as opposed to statically binding a subtask to a
processor.

Contributions. First, we draw upon optimal multiprocessor rate-based scheduling al-
gorithms from the real-time scheduling literature and let subtasks of a DAG to migrate
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Fig. 1. Sample task graph T

to minimize the processor needs on an SMP while meet-
ing a stipulated throughput. E.g., in Fig. 1, if external in-
puts arrive at T once every three time units, then static
mapping of subtasks will require at least six processors to
keep up with the incoming requests. On the other hand,
if subtasks can migrate, then they may be scheduled on
only four processors such that each subtask executes for
at least two time units in intervals spanning three time
units, which is sufficient to guarantee stability. In this ex-
ample, processor needs are higher by 50% if migrations
are disallowed. On the other hand, lowering the number
of processors has the effect of worsening T ’s end-to-end latency from six to nine time
units. Hence, the approach may not be applicable to all systems, but, resource savings
can be quite considerable if some increase in latency can be tolerated. E.g., in systems
that consist of multiple tasks as T , each task could contribute to saving two processors,
leading to substantial cumulative savings.

Next, within the scheduling approach proposed, we consider lowering end-to-end
latency and present a heuristic for the purpose. Our heuristic is based on grouping con-
secutive subtasks on a sub-path into a task chain that may be scheduled as a single unit.
Unlike prior work, the purpose of our grouping is not to determine a mapping from sub-
tasks to processors. Thirdly, we provide an algorithm for computing an upper bound on
the end-to-end latency for any input through the DAG under the scheduling approach
and heuristic proposed. Finally, we evaluate the efficacy of our methods using synthetic
task graphs.

Organization. The rest of this paper is organized as follows. Our task and system
model are presented in Sec. 2, followed by a description of the basic scheduling
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approach that minimizes processor needs in Sec. 3. Heuristic for lowering latency and
an algorithm to compute an upper bound on latency are presented in Sec. 4. Sec. 5 pro-
vides a simulation-based evaluation, Sec. 6 reviews related work, while Sec. 7
concludes.

2 Task and System Model

We consider scheduling tasks modeled as DAGs, also referred to as task graphs, on
SMPs. Each node of a DAG denotes a subtask, which constitutes a sequential section of
an entire task. Tasks are denoted using upper-case letters; subtasks are indexed and de-
noted, e.g., as T1, T2, . . .. Since a subtask is sequential, it may not execute on more than
one processor at a time although execution on different processors at different times
is allowed. Nodes are weighted, with the weight of a node Ti denoting the associated
subtask’s worst-case execution cost Ti.e.

A DAG’s edges impose a partial order among its nodes, indicating the orders in
which subtasks may execute while processing a single request. Branches in paths have
fork semantics, hence, all branches should be executed, and may proceed concurrently,
if enough resources are available. Inter-processor communication costs are assumed to
be negligible, so edges are not weighted. An example task graph with six nodes T1–T6

is shown in Fig. 1.
A task is recurrent and triggered by external inputs or arrivals. We assume that any

two consecutive arrivals to a task T are separated by at least its minimum inter-arrival
time, referred to as its period, denoted T.p. This can be accomplished in practical im-
plementations by delaying an early arrival until its stipulated arrival time (assuming
that the arrival rate over the long run does not exceed 1/period ). A task’s period may
be smaller than the weighted length of any of the paths in its graph, necessitating that
subtasks be pipelined. However, a single subtask cannot have more than one instance
executing at any time, which we refer to as subtask concurrency constraint (SCC).
Therefore, a task’s period T.p may not be smaller than the execution costs of any of its
subtasks Ti, Ti.e. The jth instance of task T and subtask Ti processing the jth arrival
are denoted T j and T j

i , respectively.
The sum of the execution costs of all the subtasks of T is referred to as the total

execution cost of T , denoted T.e. The ratio of T.e to T.p is the utilization, T.u, of T .
Task preemption and migration costs are assumed to be negligible.

3 Basic Task Graph Scheduling Approach for SMPs

One trivial way of meeting a task T ’s throughput requirement, while respecting the
SCC, is to order its subtasks in a linear chain that is consistent with the DAG’s partial
order, round robin external arrivals among available processors, and process each arrival
exclusively on a single processor. E.g., in Fig. 1, T.p=3, T.u=4, so T can be scheduled
on four processors by running instance T 4·i+j on processor j for all i ≥ 0 and j =
1, 2, 3, 4. That is, subtasks T 1

1 –T 6
1 will be run in order on the first processor, T 1

2 –T 6
2 on

the second processor, and so on. It is easy to show that, by this method, it suffices to
allocate �T.u� processors to T .
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The above method is optimal for task graphs that are linear chains with integral
utilization, but not for arbitrary DAGs or chains with non-integral utilization. Also,
end-to-end latency could be extremely high for arbitrary DAGs. E.g., latency for T in
Fig. 1 is twelve by this approach, and would increase with additional nodes added to
the concurrent stage, whereas the length of the longest path would remain at six. In this
sense, the approach does not scale with increasing concurrency.

In what follows, we propose a scheduling approach that scales with concurrency. For
this, we draw upon optimal multiprocessor rate-based scheduling algorithms. We begin
with a brief overview.

3.1 Overview of Rate-Based Scheduling on Multiprocessors

Algorithms based on proportionate-fair or Pfair scheduling [8] are the only known
way of optimally scheduling systems of stand-alone rate-based tasks, which can be
thought of as a generalization of sporadic tasks, on multiprocessors. A sporadic task T
is sequential, characterized by a period T.p and a worst-case execution cost T.e ≤ T.p.
T may be invoked or released zero or more times, with any two consecutive invocations
separated by at least T.p time units. Each invocation of T is referred to as its job, is
associated with a deadline that equals its period, and should complete executing within
T.p time units of its release. The ratio T.e/T.p ≤ 1.0 denotes T ’s utilization T.u,
which can be thought of as the rate at which T executes. Pfair algorithms are optimal
for scheduling a task set τ of sporadic or rate-based tasks on M identical processors in
that no job of any task would miss its deadline if the total utilization of τ is at most M .

Pfair algorithms achieve optimality by breaking each task into uniform-sized quanta
and scheduling tasks one quantum at a time. Processor time is also allocated to tasks in
discrete units of quanta. As such, all references to time will be non-negative integers.
The time interval [t, t + 1), where t is a non-negative integer, is referred to as slot t.
(Hence, time t refers to the beginning of slot t.) The interval [t1, t2) consists of slots
t1, t1 + 1, . . . , t2 − 1.

Each job of T consists of T.e quanta. A task’s quanta are numbered contiguously
across its jobs (starting from one), thus, quanta (j − 1) × T.e + 1 through j × T.e
comprise the jth job T j . The ith quantum of T is denoted Qi

T , and is associated with
a release time and deadline, denoted r(Qi

T ) and d(Qi
T ), respectively, which define the

window within which it should be scheduled. Release time and deadline for the ith

quantum that belongs to the jth job of T (that is, j = � i
T.e�) are defined as follows.

r(Qi
T )=r(T j)−(j − 1)×T.p+

⌊
i − 1
T.u

⌋
∧ d(Qi

T )=r(T j)−(j − 1)×T.p+
⌈

i

T.u

⌉
(1)

The windows of all the quanta that belong to the same job T j are contained within the
job’s window, which spans [r(T j), d(T j)). Therefore, scheduling each quantum within
its window (while ensuring that no two quanta of a task are scheduled concurrently) is
sufficient to ensure that all job deadlines of all tasks are met. Windows of consecutive
quanta are either disjoint or overlap in one time slot only. Refer to Fig. 2.
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Fig. 2. First three jobs of a rate-based task T with
T.e = 3 and T.p = 5. Job and quantum windows
are depicted. Releases of the second and third jobs
are delayed by one slot each. The second quantum
in the third job is delayed by two slots.

A rate-based task (also referred
to as intra-sporadic task) generalizes
a sporadic task by allowing quanta
within a single job too to be de-
layed. Such delays are accommo-
dated by shifting quantum windows
to the right (by adding the delay to
the formulas in (1)) as needed. Refer
to the quantum windows of the third
job in Fig. 2.

On M processors, Pfair schedul-
ing algorithms function by choosing
at the beginning of each time slot, at
most M eligible quanta of different
tasks for execution in that time slot. Quanta are prioritized by their deadlines, with ties,
if any, resolved using non-trivial tie-breaking rules. The most efficient of known Pfair
algorithms has a per-slot time complexity of O(M log N), where N is the number of
tasks [8]. Tasks may migrate under Pfair algorithms, and unless migration is allowed,
optimality cannot be guaranteed.

3.2 Pfair Scheduling of DAG Tasks

A DAG task T can be Pfair scheduled by treating each of its subtasks as a stand-alone
task of a sporadic task system and assigning the stand-alone task the subtask’s execution
cost and the DAG’s period. Subtask dependencies imposed by the DAG can be taken
care of by releasing the jth instance T j

i of subtask Ti only when both of the following
hold: (i) the jth instances of all the subtasks that Ti is dependent upon, as well as the
previous instance, T j−1

i , of Ti have completed execution, and (ii) at least T.p time units
have elapsed since the release time of the previous instance T j−1

i of Ti. The optimality
of Pfair scheduling immediately ensures that on �T.u� processors, each instance of
each subtask completes within T.p time units of its release, providing the bound in the
following theorem on the end-to-end latency through a DAG.

Theorem 1. A DAG task T with total utilization T.u ≤ M can be Pfair scheduled on
M identical processors such that its end-to-end latency is at most S × T.p, where S is
the number of subtasks in the longest, unweighted path in T .

Since the end-to-end latency bound under Pfair depends only on the longest (unweighted)
path to any leaf node, adding more nodes without increasing the path length, which
amounts to increasing concurrency, would not worsen the latency bound. Hence, this
approach can be said to scale with concurrency. On the other hand, every unit increase
in the path length would, by the above theorem, worsen the latency bound by the DAG’s
period. This would certainly not be desirable if node execution costs are much less than
the period. We address the issue of controlling the increase in latency with increasing
path length in the next section. Our approach is based on grouping consecutive nodes on
a sub-path into a single schedulable entity. Towards that end, we first consider scheduling
linear chains of subtasks.
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3.3 Scheduling Task Chains

T

V

T1 T2 T3
T.p = 7
T.u = 12/7

V.p = 7
V.u = 2/7

4 4 4

1 1
V1 V2

Fig. 3. Sample task chains

If the subtasks of a linear chain are Pfair scheduled as
described in Sec. 3.2, then by Thm. 1, end-to-end la-
tency for the chain could be up to the number of sub-
tasks times the chain’s period, which could be high in
comparison to the chain’s total execution cost. E.g., the
subtasks in the chains in Fig. 3 could be Pfair-scheduled
on two processors. However, the end-to-end chain latencies could be up to 21 and 14,
respectively, which are a little too high.

It is quite easy to see that the two subtasks of V can be combined into a single
sporadic task with an execution cost of two and a period of seven that replaces the
subtasks and is scheduled as a single entity by a first-level scheduler. Allocations to V
can internally be passed on to its two subtasks. Since V is guaranteed to receive two
quanta within seven slots of each release, its end-to-end latency bound can be halved to
seven.

The total utilization of T is 12
7 , which exceeds 1.0; hence, it is not clear whether the

above straightforward approach of grouping a chain’s subtasks applied to V extends to
T . Scheduling chains with utilization greater than 1.0 is considered next.

Scheduling a task chain with utilization exceeding 1.0. We propose a two-level hier-
archical approach for scheduling such task chains. Let S be a task chain with S.u > 1.0.
Let S.uI = �S.u� and S.uf = S.u − S.I < 1.0 denote the integral and fractional parts
of S.u, respectively. (For T above, T.uI = 1 and T.uf = 5

7 .) In our approach, S
is assigned S.uI + 1 “fictitious” rate-based tasks (FTs) or virtual processors, S.uI of

which are of unit capacity, and the final one, which is a fractional fictitious task (FTfr,
denoted S.F ), has a utilization 1 ≥ S.F.u ≥ S.uf . FTs of S shall be scheduled along
with stand-alone and other FTs by a first-level Pfair scheduler. A second-level sched-
uler local to S schedules the subtasks of S upon the time allocated to its FTs, while also
controlling when the jobs and quanta of S.F are released. For instance, S.F ’s job may
have to be postponed when the chain’s release is postponed. Local scheduling within
S shall be preemptive and prioritize any ready subtask that corresponds to an earlier
instance over another that corresponds to a later instance. Then, one might expect that
end-to-end latency for S should be bounded if S.F.u = S.uf . However, it turns out
that, for latency to be bounded, a slightly higher capacity, in the form of utilization

greater than S.uf for their FTfr S.F , might be required for some chains S. In what
follows, we provide an example of a chain for which no extra capacity is needed and
a counterexample for which the minimal capacity does not suffice. Let T k

i,j denote the
jth quantum of the kth instance of subtask Ti.

Example. Let T of Fig. 3 be allocated two FTs of utilizations 1.0 and 5
7 , respectively.

Allocations due to the first FT are guaranteed every slot, whereas those due to the sec-
ond whenever that task is scheduled by the first-level scheduler. It can be verified that
if the task chain’s releases are separated by exactly seven slots, then a pattern in which
each instance receives five quanta in the first seven slots of its release and thereafter
executes continuously until completion, with no allocation going unused, emerges. By
this approach, the end-to-end latency for T is lowered to 14 from 21.
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FT2’s release delayed by one slot at these times

Fig. 4. Initial segments of schedules for the task chain Y
when allocated processing capacities of 1 1

3
and 1 1

2

Counterexample. This seem-
ingly effective approach can fail

if allocations due to FTfr cannot
be put to use due to SCC. Con-
sider Y with Y.u = 4

3 in Fig. 4.
The first schedule in the figure
is when the capacity allocated to
Y is 4/3; hence, Y.F.u = 1/3.
Each quantum of Y.F can re-
ceive its allocation in any one
of the three slots that span its
window. If the allocations are
always such that they cannot
be put to use, as it is the case
in the schedule depicted (solid
lines in the second row), then la-
tency for Y would grow without
bound. In the example, Y 5

1,1 cannot be scheduled at time 13 because the previous in-
stance of Y1, Y 4

1 , is executing at that time. It can be verified that delaying Y.F ’s quanta
do not prove to be effective either.

Bounding latency. One way of ensuring bounded latency for a task as above is to
inflate the capacity allocated to it. The increase depends on the task parameters, and in
most cases, is much less than rounding to the next integer. For Y above, inflating by 1

6
from 1 1

3 to 1 1
2 suffices. A schedule for Y with the inflated allocation is also shown in

Fig. 4. The extra capacity, if any, needed by a chain is determined in Thm. 2.
To see how inflating helps, note that in our example, when the fractional capacity is 1

3 ,

it is not possible to guarantee that allocations due to the FTfr do not occur when a prior
instance of the first subtask in the chain executes. For instance, if the third quantum due
to Y.F were available at time 6 or 7 (instead of 8) in the first schedule, then Y 3

1,1 could
have executed concurrently with Y2,2. Increasing the capacity to 1

2 gives us the flexibility
to postpone the release of the fractional task when wastage is possible, so that at least
one quantum that can be put to use gets allocated within three slots of a release of Y .

Before we proceed further, some notation is in order. For any task chain C, let C.ef def=
C.e%C.p, and C.ei

def=
∑i

k=1 Ck.e, the cumulative execution cost of its first i subtasks.
Take C.e0 = 0. Let C.σ denote that subtask of C that would have commenced execution

but not completed if C were allocated C.ef time slots. Formally, C.σ
def= Ck, where

k = (i|C.ei−1 <C.ef∧C.ei >C.ef ), if an i as defined exists, and ∅, otherwise. Finally,
let C.σ.e1 denote the number of quanta of C.σ that are contained in the initial C.ef quanta
of C, and C.σ.e2, the remaining number of quanta of the same subtask. (If C.σ=∅, then
C.σ.e1 =C.σ.e2 =0.) For T in Fig. 3, T.ef = 5, T.σ=T2, T.σ.e1 =1 and T.σ.e2 =3.

Since subtasks are prioritized by the instances they are part of, of all the pending
instances, the latest instance of C, C�, is bound to receive the least allocation in the C.p
slots of its release. Our goal is to ensure that this allocation to C� is at least C.e%C.p
quanta, by ensuring that at least this many quanta due to C.F remain “usable.”
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If an instance of C, Cj , receives C.ef quanta in the first C.p time slots of its release,
then C.σj would receive C.σ.e1 of those, and the amount of execution still pending for
C.σj would be C.σ.e2. If Cj can execute continuously until completion after C.p slots,
then C.σj would complete in as many slots as it has pending quanta. Hence, our goal
would be accomplished if the allocations needed for the C.σ.e1 initial quanta of the
next instance of subtask C.σ, C.σj+1, are guaranteed to be available in C.p − C.σ.e2

slots following the completion of C.σj . As is formally proved below, this is possible
if the processing capacity allocated to C is increased to the maximum of C.uf and

C.uf ′ def= C.σ.e1

C.p−C.σ.e2 .

Theorem 2. A task chain C with C.u > 1.0 can be guaranteed an end-to-end latency
bound of �C.u�×C.p if C is allocated a processing capacity due to at least �C.u� unit

capacity FTs and one FTfr, C.F , with utilization C.F.u=max(C.ef

C.p , C.σ.e1

C.p−C.σ.e2 ).
Proof. Let local scheduling within C be as described earlier. Let n = �C.u� − �C.u�.
We prove the theorem by claiming that if a capacity as specified is allocated, then every
instance of C executes (a) for at least C.ef ≤ C.p slots in the first n×C.p slots of its
release and (b) continuously thereafter until completion. The bound on latency would
immediately follow. (Part (b) of the claim assumes that each instance of each subtask
executes for exactly its execution cost, and each instance of C executes for exactly C.ef

slots in the first C.p slots. This assumption can be relaxed at the cost of a longer proof.)
The proof of the above claim is by induction on C’s instances.

Base Case. Since the first instance of C is prioritized over the remaining instances, it
can execute continuously from release until completion. Hence, it would receive all of
the initial C.p slots, which forms the base case.

Induction Step. Assume that the claim holds for the first k−1 instances (induction
hypothesis, IH). We first prove Part (a), i.e., show that the kth instance executes for at
least C.ef slots within n × C.p slots of its release. If C.u is integral, then this part is
vacuously true. Hence, assume otherwise, so n = 1. Let t denote the release time of Ck,
r(Ck). Because C’s releases are at least C.p slots apart, by IH, no subtask preceding
C.σ would be pending in any prior instance, and the prior instance of C.σ, C.σk−1,
completes execution by time t + C.σ.e2. Therefore, it suffices to ensure that the kth

instance of C.σ, C.σk , can receive at least C.σ.e1 quanta in [t+C.σ.e2, t+C.p), while
the kth instances of the subtasks preceding C.σ receive at least C.ef −C.σ.e1 quanta
before C.σk . We consider two cases.

Case 1. C.ef

C.p
≥ C.σ.e1

C.p−C.σ.e2 . In this case, C.F.u = C.ef

C.p and C.F.p = C.p. Therefore,
since C’s arrivals are separated by at least C.p slots, C.F ’s releases can be made to
coincide with those of C. Hence, a new instance of C.F is released at t. The number
of quanta windows of C.F fully contained in the interval [t, t + C.p) is exactly C.ef ,
its execution cost. Of these, at most �C.F.u×C.σ.e2� are contained (either fully or
partially) in [t, t + C.σ.e2) in which C.σk−1 may execute. Therefore, the number of
windows fully contained in [t + C.σ.e2, t + C.p) is at least C.ef − �C.F.u×C.σ.e2�.

Since C.σ.e2 = C.σ.e − C.σ.e1 and C.F.u = C.ef

C.p , we have

# of quantum windows fully contained in [t + C.σ.e2, t + C.p)≥C.ef−�C.ef×(C.σ.e−C.σ.e1)
C.p

�.
(2)
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By C.ef

C.p ≥ C.σ.e1

C.p−C.σ.e2 , we have C.σ.e−C.σ.e1

C.p ×C.ef ≤ C.ef −C.σ.e1 (cross-multiply

and use C.σ.e2 = C.σ.e − C.σ.e1), substituting which in (2), we have the number
of windows fully contained in [t + C.σ.e2, t + C.p) to be at least C.σ.e1. Therefore,
C.σk can execute for C.σ.e1 slots without conflict with C.σk−1, while the previous
allocations due to C.F can be made use of by the preceding subtasks to execute for
C.ef − C.σ.e1 quanta.

Case 2. C.ef

C.p
< C.σ.e1

C.p−C.σ.e2 . In this case, cross-multiplying and rearranging terms

in its condition, we have C.ef

C.p > C.ef−C.σ.e1

C.σ.e2 . Hence, C.F ’s capacity in this case,
C.σ.e1

C.p−C.σ.e2 , is greater than C.ef−C.σ.e1

C.σ.e2 . Also, C.p=C.σ.e2+(C.p−C.σ.e2). Therefore,

to ensure that C.σk does not become ready until its previous instance C.σk−1 completes
at t + C.σ.e2, C.F can be throttled to receive allocations at a lower rate of C.ef−C.σ.e1

C.σ.e2

in the first C.σ.e2 slots of Ck’s release, by releasing its job at t with execution cost
C.ef − C.σ.e1 and deadline t + C.σ.e2. This would result in an allocation of exactly
C.ef −C.σ.e1 quanta in [t, t+C.σ.e2) which can be used by subtasks preceding C.σk .
At time t + C.σ.e2, when C.σk−1 completes execution, C.F ’s job released at t would
also complete. Hence, C.F ’s capacity can be restored and a new job released for it at
that time with execution cost C.σ.e1 and deadline t+C.p−C.σ.e2, which would lead to
an allocation of C.σ.e1 quanta for C.σk . Changing a task’s utilization at job boundaries,
as long as the total utilization of the task system does not exceed the processing capacity
available, does not lead to any deadline misses under Pfair scheduling, as proved in [9].
Thus, C.F can be made to receive exactly C.ef quanta and Ck to execute for C.ef slots
in the first C.p slots.

We are left with proving Part (b). Suppose to the contrary that Ck does not execute
continuously from time t+n×C.p. Let t′ denote the earliest time at or after t+n×C.p
that Ck does not execute. Then, at t′, either all the processors are busy executing prior
instances of C, or some subtask of Ck has its previous instance still executing and hence
cannot commence. The former implies that at least �C.u� prior instances of C are still
executing at t′. The release time of (k−�C.u�)th instance is at or before t−C.p×�C.u�,
and hence, by IH, completes at or before t−C.p × �C.u�+�C.u�×C.p≤ t + C.p≤ t′,
a contradiction. Therefore, Ck’s execution cannot be stalled due to lack of processors.
We next show that Ck’s execution is not blocked due to SCC either. Suppose not; let
Ck

� be the first subtask in Ck that is blocked because Ck−1
� is still executing. Since

r(Ck−1)≤ t−C.p, Ck−1
� completes at t−C.p+(C.e�−C.ef )+C.p= t+C.e�−C.ef (by

IH). The completion time of Ck
�−1 is given by t+(C.e�−1−C.ef )+C.p, which, because

C�.e ≤ C.p, is at least t+(C.e�−1−C.ef )+C�.e, that is, at least t + C.e�−C.ef , the
completion time of Ck−1

� . Thus, Ck−1
� completes before Ck

�−1, a contradiction again.
The theorem follows. �

Corollary 1. The end-to-end latency of a task chain when it is Pfair-scheduled as a
single entity is at most the latency when its subtasks are Pfair-scheduled independently.

Proof. Follows from Thms. 1 and 2 because C.u is at most the number of C’s subtasks.
�
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4 Managing Latency in Arbitrary DAGs

In this section, we first present a heuristic for lowering end-to-end latency in arbitrary
DAGs. The basic idea is to construct one or more (sub-)task chains, each of which
consists of one or more consecutive subtasks in a sub-path of a DAG, and is sched-
uled as a single entity. By Cor. 1, latency through the grouped subtasks is at most that
when they are scheduled independently, and is likely to be much lower when grouped
well. After dealing with task chain construction, we consider computing a bound on the
end-to-end latency.

4.1 Chain Construction Heuristic

The basic idea is to iteratively do depth-first-search from candidate nodes (nodes with
no incoming edges from subtasks not yet grouped) to identify the next best (sub-)path
whose nodes can be grouped. Candidate paths are built such that no node in the path
has an incoming edge from a node that is not in either the path under construction or
a chain constructed in a previous step. This way, the chain sequence would be acyclic,
which simplifies latency computation. Some criteria for identifying the best path are
inflation to utilization, effectiveness in lowering latency, path length etc.

An example is provided in Fig. 5. Grouping starts from T1. Two candidate paths
from T1 are C1 = T1T2T4 and C′

1 = T1T3. These paths cannot be extended further
since there are incoming edges to T6 and T5 from T5 and T2, respectively, that are not
on their respective paths. C1.e

f =5, C1.u
f = 5

10 , and C1.u
f ′

= 2
6 . C1.u

f >C1.u
f ′

, so
by Thm. 2, C1’s utilization need not be inflated. Since C′

1.u = 7
10 < 1.0, no inflation

is needed for C′
1, either. Of the two, we choose the longer path, C1. The next candidate

node is T3, the path T3T5T6 from which covers all the remaining nodes. This path too
does not need inflation to utilization. It should be noted that if extending a path by one
or more nodes leads to higher inflation to utilization, then our heuristic does not perform
the extension.

T1

T2

T3 T5

T6

3

6

4

6

8

T4Task T

6

T1 T2 T4 T5 T6

3 6 46 8
T3

6

T.p = 10
T.u = 3.3

Chain C1
Chain C2

Fig. 5. Grouping subtasks into chains

One complication that arises when
scheduling a set of chains constructed from
a DAG is that any node in a chain (not nec-
essarily the first) may have an incoming
edge from any node (not necessarily the
last) in a previous chain. Edges (T1, T3)
and (T2, T5) are examples. Consequently,
an instance of a chain may block after it
commences. E.g., it can be verified that T 1

3

(in C2) becomes ready at most six time
units after T 1’s release, and can complete
by time 11, whereas T 1

5 (in C2 again) may

not be ready until time 14. If the blocking subtask is served by the FTfr, then during

the stall, the pending quanta of the FTfr should be delayed (recall that a rate-based
task’s quanta can be delayed) to ensure that the allocations due to it do not go waste
and latency is bounded. In our example, the release of the 5th quantum of C2.F

1 can
be delayed until time 14.
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procedure CONSTRUCT-CHAINS (DAG T )

1 while num ungrouped nodes > 0 do
2 for each candidate node do
3 curr chain := CHAIN-FROM

(candidate node,
∅);

4 if ISBETTER(curr chain ,
best chain) then

5 update best chain ,
num ungrouped nodes ,
list of grouped nodes;

fi
od

od
6 coalesce as many adjacent chains as

possible into a single one

procedure CHAIN-FROM(integer next node , CHAIN
curr chain) returns CHAIN

1 if there is an incoming edge from an ungrouped node to
next node then

2 return curr chain;
else

3 append next node to curr chain;
fi

4 best chain := curr chain;
5 for each node ∈ adj list(next node) do
6 curr chain := CHAIN-FROM( node , curr chain );
7 if ISBETTER(curr chain , best chain ) THEN
8 best chain := curr chain;

fi
od

9 return best chain;

Fig. 6. Heuristic to group subtasks into chains

As can be seen from Sec. 4.2, latency through the DAG after grouping is at most 29
time units, which is only 1.26 times the length of the longest DAG path (23), while re-
quiring no extra processing capacity. In comparison, if subtasks were statically mapped
to processors, at least five processors (>50% extra capacity) would be required, and if
subtasks were Pfair-scheduled without grouping, then the end-to-end latency could be
up to 40.

Pseudo-code for the chain-construction heuristic is provided in Fig. 6 and should be
self-explanatory. After basic chains are constructed, adjacent chains are coalesced if
doing so has scope to lower either latency or inflation to utilization. When coalesced,
nodes that belonged to different chains need not be on a path in the DAG. In such a
case, an imposed dependency edge is introduced as appropriate. The complexity of the
heuristic is O(V (V + E)), where V is the number of nodes, and E, the number of
edges, in the DAG.

4.2 End-to-End Latency Bound

Our latency-computation algorithm for a DAG grouped into chains is based on that for
determining the DAG’s longest path. Pseudo-code is provided in Fig. 7. Nodes are con-
sidered in a topologically-sorted order by considering chains, and nodes within chains,
in the order they were included while grouping. For each node, the latest time it would
complete is determined by determining the completion time along each incoming edge.

Some aspects to note are as follows. First the time spent in a node can exceed its

weight if the node is served by its chain’s FTfr. In such a case, the additional time
taken can be computed from the release time and deadline (determined using Eq. (1))

of the quanta of the FTfr that will serve it. The accuracy of the end result can be
increased if the latest completion time for the node is computed (as opposed to the
time spent in it) by collectively considering all preceding nodes in the longest path to
the node (through the incoming edge under consideration) that are in the same chain.
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procedure LATENCY-BOUND (DAG T , DAG chains chains )
1 for each chain C ∈ chains do � taken in order
2 for each node of C do � taken in order
3 l e time[node] := Tnode .e;
4 l s time[node] := 0;
5 for each incoming edge into node do

� Compute the first and last quanta in the sub-path of
� all nodes (in C ) in the longest path to node
� along incoming edge

6 if incoming edge is from pred node in C then
7 st q := first q[pred node];
8 end q := st q+path e in chain[pred node]

+T.enode−1;
else

9 st q := T .enode − Tnode .e+1;
10 end q := T .enode ;

fi
11 compute end time and start time along

incoming edge using st q , end q , C .uf ,
C .uf ′

, C.F.u, l s time[pred node], and Eq. (1);
12 if end time > l e time[node] then
13 l e time[node] := end time;
14 l s time[node] := start time;
15 first q[node] := st q ;
16 path e in chain[node] := end q−st q+ 1;

fi
od

17 if l e time[node] > max t then max t := l e time[node]; fi
od
� Adjust end time to take into account delays due to
� earlier instances of later subtasks

18 for each node of C do � taken in reverse order
19 if l s time[node] > l e time[pred node in chain] then
20 update l e time[pred node in chain] and

l s time[pred node in chain] appropriately;
fi

od
od

21 return max t ;

Fig. 7. Algorithm to compute end-to-end latency bound through a DAG
decomposed into chains

E.g., in Fig. 3, the
latest completion
time for T2 would
be ten if the sub-
path consisting of
its predecessor T1

and itself is con-
sidered as a sin-
gle unit. On the
other hand, if the
nodes are consid-
ered individually,
and the maximum
time through each
is determined (us-
ing (1)), then the
latest completion
time for T2 could
be 11, which is a
tad loose.

A second as-
pect is that a sub-
task earlier in a
chain may be de-
layed by prior in-
stances of later
subtasks in the
chain. Such de-
lays should be
properly accounted
for. E.g., if T in
Fig. 5 is released
every ten slots,
then T 3

3 cannot
commence until
time 29 (nine slots
after T 3’s release)
even though it is
ready at time 26,
since T 1

6 and the
first four quanta
of T 2

5 may not
complete until time 29. Hence, since T3 is served by C2.F and C2.F.u = 8

10 , and
so can require up to five slots for its four quanta, the completion time of an instance
of T3 can be up to 14 slots from T ’s release time. If T3 were to have an outgoing edge
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to a later chain, then the ready time of the subtask that the edge is incident to should
be taken as 14 and not 11. In Fig. 7, such delays are accounted for by the for loop
beginning at line 20. It can be shown (by induction over chains) that latency is bounded
despite such delays. A formal proof is omitted due to lack of space. The complexity of
the algorithm is O(E + V ).

5 Empirical Evaluation

Experiments were conducted using randomly-generated task graphs to evaluate the ef-
ficacy of Pfair scheduling (with and without grouping) in lowering processor needs and
latency.

Random DAGs were generated using the following configuration parameters: total
number of DAG nodes (total nodes), the upper limit on spatial concurrency
(max conc), and the maximum length (in nodes) of a concurrent path (conc len).
Fig. 8 provides an illustration. Nodes were added in the order of stages until the limit
of total nodes was reached. The number of nodes in a sub-stage of a concurrent
stage was distributed uniformly between 0.6×max conc and max conc. When a new
node was added, needed edges connecting it to those already present were inserted. All
leaf nodes that existed after the addition of total nodes−1 were linked to the final
node. Cross edges connecting concurrent paths were randomly inserted with a uniform
probability of 0.05. Each DAG’s period was set to 20 and subtask execution costs were
uniformly distributed between 6 and 15.

num_nodes ≤ max_conc

num_nodes
≤ 2

cross edge

num_nodes
≤ 2

conc_length

to next 
stage

concurrent 
stage

su
b-

st
ag

e

Fig. 8. Random DAG structure

For each DAG generated, we determined
upper bounds on latencies under Pfair schedul-
ing with and without grouping. We also deter-
mined the number of processors that would be
needed if migration were disallowed. Results
are shown in Fig. 9. Each value reported is the
average determined for 10,000 DAGs. Inset (a)
shows latency results for DAGs with 31 nodes
(resp., 16 nodes) for max conc values of 2,4,
and 8, (resp., 2, 4, and 6) with conc len set to
three (resp., two) in each case. Our comparison
metric is the ratio of latency under the consid-
ered approach to the longest weighted path through the DAG (a lower bound on la-
tency). As expected, latencies are considerably and consistently lower when subtasks
are grouped. Also as expected, when the number of nodes is constant, the efficacy of
grouping decreases with increasing concurrency, though it is still better by over 30%
even in the worst case reported. Turning to the processing needs of the various ap-
proaches, a processing capacity that equals the total utilization (whose average value
is 17.5 and 8.5 for 31 and 16 nodes, respectively) suffices when nodes are ungrouped.
When grouped, the average total inflation to a DAG is around 1% of the total utilization,
while it is close to 50% under static mapping. Inset (b) shows the results for constant
max conc but varying total nodes, and hence, varying path lengths. Results for other
values of configuration parameters were similar, but could differ if subtask execution
costs are chosen differently.
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Latency Comparison (conc_len = {2,3} for {16,32} nodes)
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Fig. 9. Comparison of latencies and processor needs under different approaches

6 Related Work

Scheduling a task with concurrency modeled as a DAG on multiprocessors is well-
studied, with a large body of work focused on minimizing the makespan of a single
task instance. Since the problem is NP-complete for the general version and for most
except a few simple variants [2], the focus has been on devising efficient heuristics.
Refer to [7] for a survey.

Some later and recent work in this area has turned to scheduling recurring instances
of DAG tasks. Most of the work is for DMMs and considers statically mapping tasks
to processors under differing assumptions on task concurrency and structure. Schedul-
ing DSP applications to maximize throughput is considered in [5]. The target platform
in this work is closely-coupled, but has local processor memories and a segmented
bus that make memory access times non-uniform. Optimizing latency under through-
put constraint and vice versa by assigning parallelizable subtasks (which thereby allow
data parallelism) to multiple processors is considered in [1]. Mapping a chain of data-
parallel tasks to processors, including replicating subtasks for optimizing throughput,
is the subject of [10], while evaluating latency-throughput tradeoffs that of [11].

There has also been work targeting specific architectures. E.g., scheduling on pro-
cessors connected by point-to-point networks to meet the throughput requirement is
considered in [4], while network of workstations are targeted in [12] for scheduling
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video-processing algorithms to optimize the number of processors needed for a desired
throughput and vice versa. Heuristics for mapping tasks of streaming applications for
execution on workstations of a cluster is considered in [3].

All of the work referred to above is for DMMs in which inter-processor communica-
tion and migration overheads can be significant. Hence, applying techniques proposed
therein for SMPs can be overkill.

7 Conclusion

We have proposed allowing the subtasks of a DAG task to migrate across the processors
or cores of an SMP to enable meeting throughput requirements with fewer processors.
We have also proposed a heuristic for lowering the end-to-end latency of a DAG and
an algorithm for determining an upper bound on that measure under the scheduling
approach proposed. Empirical evaluation using synthetic task graphs shows that our
approaches can significantly lower processor needs, while incurring only a modest in-
crease in latency in comparison to those that prohibit migration.

Some avenues for future work are as follows. First, the proposed algorithms can
be extended to architectures in which not all but only subsets of cores share common
caches and evaluated on a multicore test-bed. Second, latency computation can be incor-
porated within the grouping heuristic to construct better groups that can lower latency,
and guarantees on performance that can be made in general can be determined. Finally,
the latency computation algorithm can be extended for bursty arrivals and stochastic
workloads.
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