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Abstract. An important design issue of SMT processors is to find
proper sharing strategies of resources among threads. This paper pro-
poses a ROB sharing strategy, called paired ROB, that considers the
fact that task parallelism is not always available to fully utilize resources
of multithreaded processors. To this aim, an evaluation methodology is
proposed and used for the experiments, which analyzes performance un-
der different degrees of parallelism. Results show that paired ROBs are
a cost-effective strategy that provides better performance than private
ROBs for low task parallelism, whereas it incurs slight performance losses
for high task parallelism.

1 Introduction

As a single software task is far from exploiting peak performance of current
superscalar processors, simultaneous multithreading (SMT) [I] was proposed as
a way of increasing the utilization of the processor functional units. One of
the main research challenges of SMT processors is the design and optimization
of proper resource allocation policies that decide how processor resources are
assigned to each thread. Related proposals focus on the distribution of bandwidth
resources, such as fetch or issue width [2][3], as well as storage resources, such as
instruction queue, load-store queue or physical register file [4][5][6]. Most storage
resources can be easily distributed in a dynamic way among threads, since any of
their free entries can be allocated/deallocated at any time. However, the reorder
buffer (ROB) manages instructions from threads in a FIFO order, which lowers
the flexibility of dynamically assigning ROB entries to different threads.

There are two basic strategies to share the ROB among threads. The first one
is referred in this paper to as private ROB, and consists in statically partitioning
the ROB among threads. This approach is simple, has small hardware cost, and
distributes ROB resources fairly among threads. The second strategy is referred
to as one-queue ROB, and consists in a shared queue where instructions from
different threads are inserted in local FIFO order, but in any global order. This
approach has, depending on the implementation, several drawbacks in terms
of hardware cost and performance: a) the dispatch, commit, and recover logic
increases, b) instructions from different threads can block each other at commit,
¢) ROB holes (empty intermingled slots) appear when one single thread squashes
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its instructions after a mispeculation, and d) global performance can be reduced
when a stalled thread occupies too many entries of the shared ROB.

All these arguments against the shared approach seem enough to discard
this design. This conclusion has been already drawn in several research works
[[7][8]. However, all these studies evaluate ROB partition strategies in heavily
loaded systems, that is, systems running a number of computation intensive
software tasks equals to the number of hardware threads (e.g., a 4-benchmark
mix on a 4-threaded 8-way processor). But it is not uncommon to find lightly
loaded multithreaded systems, that is, systems using only a small portion of
their hardware threads for computation intensive workloads.

Let us consider a typical user executing a single sequential (i.e., non parallel)
computation intensive application on a 2-threaded SMT processor. This user does
not experience any performance improvement at all with multithreading. More-
over, if the processor implements a private ROB partitioning, only half of the ROB
entries are available to the computation intensive application, so a performance
loss can be noticed for the same total ROB size. This effect has been evaluated
by running the SPEC2000 benchmark suite on a single-threaded and a 2-threaded
processor, both of them with the baseline parameters shown in Sectiond] and a to-
tal number of 128 ROB entries. Results (not shown here) point out a performance
loss of 9.2% and 20.2% for integer and floating-point benchmarks, respectively,
when using the multithreaded machine with private ROBs.

Of course, multithreaded processors should not be evaluated only in lightly
loaded systems, which would be unfair. On the other hand, to assume that the
system is always running a heavy workload is neither a realistic way to measure
performance. We claim that this is an issue that needs to be considered for a
fair evaluation of multithreaded processors.

In this work, we propose a ROB sharing strategy, called paired ROB, that
takes into consideration the fact that task parallelism is not always available to
fully utilize resources of multithreaded processors. First, an evaluation method-
ology is proposed based on a formal definition of the available task parallelism.
Then, paired ROBs are shown to perform similarly to shared ROBs for low task
parallelism (with a lower hardware cost), and close to private ROBs for high
task parallelism.

The rest of this paper is structured as follows. Section [2] analyzes advantages
and disadvantages of private and shared ROBs, and describes the paired ROB
proposal. Section [3] defines in a formal way the available workload parallelism,
and details the simulation methodology. Section [] shows simulation results, and
finally, some related work and concluding remarks are presented.

2 ROB Sharing Strategies

In this section, three different ROB sharing strategies are analyzed, namely
private, one-queue (shared) and paired ROBs. The first two sharing strategies
represent basic design options, which suffer from some disadvantages regarding
either complexity or performance. These drawbacks are smoothed by paired
ROBEs, by trying to gather the best properties of both approaches.
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Fig. 1. ROB sharing strategies

The hardware cost analysis presented in this section is based on the required
accesses to the ROB, which usually occur in the dispatch (insertion), commit
(extraction), and recover (squash) stages of the processor pipeline. In what fol-
lows, the number of threads supported by a multithreaded system is represented
as n, while s stands for the total ROB size in number of entries (i.e., the sum
of all per-thread ROB sizes). For the sake of simplicity, a one-way processor is
assumed, but results can be easily generalized to w-way superscalar processors,
where ROBs are implemented by using w-port RAMs [9].

2.1 Private ROBs

The first straightforward sharing strategy consists in not sharing the ROB at
all. The global ROB is split into different partitions, which act as independent
FIFO queues, each one associated to a thread (Figure[lh). Each queue is managed
by two pointers, namely head (H) and tail (T), which track the insertion and
extraction point into and from the corresponding queue. The required hardware
structures and the actions involving the ROB are the following:

At the dispatch stage, instructions are placed in the ROB at the position
indicated by the tail pointer. To this aim, a demultiplexer (or decoder), controlled
by the ROB tail pointer, sends the instruction information to the corresponding
ROB entry. Private ROBs require n independent demultiplexers with » outputs,
and an additional n-output demultiplexer selects the target private ROB.

At the commit stage, instructions are extracted from the ROB head. Pri-
vate ROBs can perform this step in parallel with n *-input multiplexers, which
transmit the extracted instruction into the rest of the commit logic.

Finally, the mispeculation recovery mechanism squashes some or all instruc-
tions in the ROB. If recovery is performed at the commit stage, the ROB must be
just emptied, that is, the head and tail pointers must be reset. On the contrary,
if recovery is implemented at the writeback stage, only instructions younger
than the recovered one must be squashed, which implies an adjustment of the
tail pointer. In any case, recovery requires no read, write, or selection of ROB
entries; related hardware must just update the queue pointers.

2.2 One-Queue ROB

In the opposite extreme, the one-queue ROB is based on a fully shared cir-
cular queue, where all threads place their instructions in the global dispatch
order (Figure [Ib). There are some advantages and drawbacks in this approach,
quantitatively evaluated in Section[d] and described next:
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Disadvantages

Inter-thread blocking at commit. The fact that two or more threads share a single
FIFO queue can lead to a situation in which the oldest instruction of a thread is
ready to commit, but unable to do it for not being located at the ROB head. If
the ROB head is occupied by an uncompleted instruction of any other thread,
a waste of commit bandwidth is incurred.

Holes at recovery. In the one-queue ROB, instructions from different threads can
be intermingled along the structure. This fact breaks the simplicity of a recovery
mechanism in which only pointer updates are performed. Instead, only those in-
structions corresponding to the recovered thread are squashed on mispeculation,
leaving empty intermingled slots or holes. These holes remain in the ROB until
their are drained at the commit stage, and cannot be assigned to new decoded
instruction, so they can cause a premature pipeline stall due to lack of space in
the ROB.

Thread starvation. An intuitively potential advantage of a one-queue ROB is
that instructions of any hardware thread may occupy all s ROB entries, in
contrast to private ROBs, which restrict the ROB usage of a single thread to ?
entries. Although this property brings flexibility, it has been demonstrated that
benefits are not straightforwardly achieved [4]. In fact, performance losses occur
when stalled threads (e.g., due to a long memory operation) uselessly occupy
large portions of the shared ROB, preventing active ones from inserting new
instructions into the pipeline.

Regarding hardware cost, one-queue ROBs have a more expensive implemen-
tation than private ROBs. For the same total number of entries s, the complex-
ity of hardware structures increases. For dispatch, an s-output demultiplexer is
needed, which has a higher delay and area than the n ;-output demultiplexers
of the private approach; for commit, an s-input multiplexer is required; finally,
recovery can be implemented with a bit line per thread that turns the associated
instructions into empty slots.

Advantages

Though the cited disadvantages could make one believe that shared ROBs do
not deserve any interest at all, there are situations where this approach com-
pletely outperforms any other sharing strategy. Consider a multithreaded proces-
sor supporting 8 hardware threads and using private ROBs. A highly intensive
computation environment can take take full advantage of multithreading in such
machine by running 8 threads on it 100% of the time. However, 8 tasks may not
be always available in the system.

The opposite extreme (discarding utter idleness of the system) is the case
where only one single software context is being executed. Private ROBs con-
strain to use only é of the total number of ROB entries available. However, a
shared ROB permits a full occupation of the ROB by the single software context,
enabling 8 times more instructions in flight, while not incurring any previously
cited performance-related disadvantage of the one-queue ROB.
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2.3 Paired ROBs

After analyzing the pros and cons of private and one-queue ROBs, a new sharing
strategy, referred to as paired ROB, is proposed with the aim of gathering the
main advantages of both private and one-queue ROBs.

Assuming a multithreaded processor with n hardware threads, and being s
the total number of available ROB entries, the global ROB is partitioned into
5 independent structures (see Figure [Ic). Each partition can be occupied by
instructions from at most two threads. The limit of two threads per partition is
supported by the results discussed in Section E1

If the system executes less tasks than available hardware threads, the assign-
ment of ROB partitions to tasks is carried out in such a way that the number of
tasks sharing a ROB partition is minimized. In other words, new active threads
try to allocate an empty ROB partition before starting to share other occupied
partition. This policy avoids inter-thread blocking, holes at recovery and thread
starvation as long as it is possible.

The benefits of paired ROBs lie both in terms of hardware complexity and
performance. Regarding hardware complexity, paired ROBs need zns—output
demultiplexers for dispatch, 5 2ns—input multiplexers for commit, and a single bit
line for recovery (only instructions from two different threads are queued in each
ROB). The number of queue pointer sets is also reduced to }. This complexity
is higher than for private ROBs, but lower than for one-queue ROBs.

3 Multitask Degree (MTD)

The effectiveness of a specific ROB sharing strategy can strongly vary depending
on the number of tasks running on the system. To take this effect into account,
the concept of Multitask Degree (MT D) is first defined in this section.

We define the MT' D as a value between 0 and 1 that represents the average
task parallelism present in a non-idle multithreaded system. A system with a
value of MT D = 0 is characterized by running a single task all the time, while
a value of 1 means that the system if fully loaded, that is, the number of tasks
matches the number of hardware threads during all the execution time. Ana-
lytically, the MTD can be expressed as y ., :;11 t;, where n is the number of
hardware threads of the system, and t; is the fraction of the total execution time
in which there are exactly ¢ tasks running in the system. For example, in a 2-
threaded processor, a value of MT D = 0.5 means that 50% of the time only one
task is running, while two tasks are running the rest of the time. In general, the
MT D value establishes the average number of running tasks as MT Dx(n—1)+1.
Figure 2l plots this equation for a 2- and 4-threaded system.

For the specific case of 2-threaded systems, the MT D conveys univocal in-
formation about the distribution of the system load. For example, a 2-threaded
system with MTD = 0.3 is characterized by executing 1 task 30% of the time
and 2 tasks 70% of the time. The MT D, however, does not provide any infor-
mation about the load distribution of a system with more than 2 threads. For
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Fig. 2. Number of tasks as a function of the MTD value in 2- and 4-threaded processors

example, a 5-threaded processor with an MTD of 0.5 (which has an average
load of 0.5 * (5 — 1) + 1 = 3 tasks) can either execute 50% of the time 1 task
and 5 tasks the rest of the time, or it can execute 2 and 4 tasks during equal
portions of the time, or it can execute 3 tasks all the time, etc. In other words,
there are multiple combinations of system loads and fractions of time that lead
to the same resulting average value.

In order to cut down the number of possible combinations and simplify the
analysis, we define the concept of steady multithreaded processor. An n-threaded
processor is said to be steady, or to have a steady load, when the number of
running tasks is exactly either « or z + 1 (1 < x < n). In this way, we limit the
model to execution periods where the number of active threads can increase or
decrease at most by one.

With this simplification, the number of possible load distributions is reduced
to just one, which means that the MT' D indeed characterizes the system load dis-
tribution univocally in a steady multithreaded processor. For instance, a steady
3-threaded system with MTD = 0.5 can be only executing 2 tasks all the time,
while the same system with MTD = 0.25 can be only achieved by executing 1
task 50% of the time and 2 tasks the rest of the time. Finally, notice that this
simplification keeps the model realistic, since operating systems usually assign
processes or threads to the CPU in an incremental way. When applied to steady
machines, the MTD is hereafter referred to as Steady Multitask Degree (sMT D).

3.1 Simulation Methodology

Experimental results presented in this paper evaluate different ROB sharing
strategies on multithreaded processors with 2, 4, and 8 hardware threads. For
each of them, different levels of task parallelism are evaluated, by presenting
results as a function of sMTD. The algorithm used to obtain a continuous
range of performance results from a finite set of simulations is presented next.
Consider a steady multithreaded system with n hardware threads, in which a
specific sharing strategy is evaluated.

First, n groups of simulations are launched. In the first group, only one task
is run on the system, and each simulation uses a different benchmark from the
SPEC2000 suite. In the second group, each experiment executes two instances
of the same benchmark, each of them running on a different hardware thread,
and so on.
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Each simulation provides a performance value (IPC), whose harmonic mean
is computed independently for each group. In this way, n average performance
values are obtained, namely I PCy, IPCs, ..., IPC,. I PCy stands for the average
performance of the n-threaded processor when executing one single task 100%
of the time; I PCs quantifies the average performance when executing two tasks
during all the simulation, and so on.

Since the objective is to obtain a single performance value (from now on
IPCy) as a function of sMTD, individual IPC; values must be combined by
assigning weighting factors to each one. These factors, called hereafter w;, are
likewise a function of sMT D, and determine how strongly each IPC; must
contribute to the computation of IPCy for a given task parallelism. I PCp can
be defined as a weighted harmonic mean, given by the following equation:

1

w1(sMTD) (sMTD) (sMTD)

IPCy(sMTD) = . y
IPCy + IPCy +..t IPC,

This equation will be used in Section ] to depict the performance achieved by a
given design under different conditions of task parallelism on the system.

The weighting functions w; must fulfill the following conditions to be consis-
tent with the sMT D definition:

i) IPCy must be weighted to 1 for sMTD = 0. The reason is that an sMTD =
0 represents a system running 1 task all the time, and thus, the performance
of this system is specified just by IPC;. Mathematically, wi(0) = 1 and
w;(0) =0 for i # 1.

1) Symmetrically, I PC,, must be weighted to 1 for sMTD = 1. Mathemati-
cally, w,(1) = 1 and w;(1) = 0 for i # n.

i11) Finally, if the system is steady, at most two IPC values can be combined
with a weight other than 0, and they must be consecutive (e.g. IPCy and
IPCs3). Mathematically, fw;, wjlw; #0Aw; #O0Ai—j > 1.

For a generic (non-steady) n-threaded processor with n > 2, it is possible to find
different weighting functions that comply with conditions ¢ and #i. Nevertheless,

a) 2 Threads b) 4 Threads
H H
1 1 T 1 i
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Fig. 3. Weighting functions w;(sMTD) in 2- and 4-threaded systems
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Table 1. Baseline processor parameters

Parameter Configuration
Machine width 8 hardware threads, 8-way fetch/issue/commit.
Storage resources 128-entry shared IQ, 64-entry shared LQ, ROBs with 32 entries per thread, per-

thread 196-entry register file.

Functional units (Count/Delay) | Int.Add. (8/2), Int.Mult. (2/3), Int.Div. (2/20),
Fp.Add. (2/4), Fp.Mult. (2/8), Fp.Div. (2,40).

L1 Caches (data & inst) 32KB, 2-way, 64-byte line, private per thread, 2 cycles.

L2 Cache (unified) IMB, 8-way, 64-byte line, shared, 10 cycles.

Branch predictor McFarling with 4K-entry gShare and 4K-entry Bimodal, 1024-entry 2-way BTB.
TLBs 16K, 4-way, shared.

Main memory 200 cycles

these functions become univocal when the additional restriction is imposed that
the system load be steady (condition ¢ii). FigureBshows a graphical representation
of the weighting functions for 2- and 4-threaded steady machines. The fulfillment of
condition 777 can be observed, for example, in Figure[Bb where the vertical dashed
line cuts all w; at sSMT D = 0.5. At this position, only ws and ws take a value other
than 0.

Notice that, for a specific sMT D, the sum of the weights is always 1, which
makes it unnecessary to normalize them when calculating I PCy. The weighting
functions for an 8-threaded machine are not shown, since they can be easily
deduced from the conditions and examples above.

4 Experimental Results

The parameters of the modeled machine are listed in Table [[I This machine
is able to fetch multiple instructions from different threads at the same cycle,
by using the ICOUNT [3] fetch policy. At the dispatch stage, instructions are
picked up from the fetch queue, and registers are renamed using per thread
private register files. The misprediction recovery mechanism is triggered at the
writeback stage, whenever a mispredicted branch is resolved.

Results shown in this section correspond to experiments with 32 ROB en-
tries per hardware thread. Additional experiments have also been conducted
with other ROB sizes, and only slight differences are observed. The simulation
environment is Multi2Sim [10], a model of multicore-multithreaded processors,
sharing strategies of processor resources, instruction fetch policies and thread
priority assignment, among others. Benchmarks from the SPEC2000 suite have
been used for the experiments. For each run, 108 instructions are executed from
each thread, after warming up the system with another 10® instructions.

4.1 One-Queue ROBs

As explained in Section [Z2] one-queue ROBs have some disadvantages, such as
inter-thread blocking at commit and holes at recovery. Figure @ quantifies the
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Fig. 4. Impact on IPC of inter-thread blocking and holes at recovery

negative impact on performance of these phenomena when varying the number
of threads that share the same ROB.

To evaluate in an isolate manner the performance damage incurred by each
phenomenon, a baseline performance value (I PCjgeq;) has been obtained from a
set of simulations of an ideal one-queue ROB. The inter-thread blocking effect is
removed from this model by improving the commit logic so that it can select the
oldest instruction of a thread regardless of its location. Additionally, the ROB is
instantaneously collapsed when a slot is squashed, preventing holes at recovery.
Eight different I PCjgeq; values are obtained for simulations running from one
up to eight tasks on the 8-threaded baseline machine.

Next, eight different performance values (I PChiocking) are obtained, following
the same procedure, and using a model of a semi-ideal one-queue ROB that does
not hide the effect of inter-thread blocking. The curve shown in Figure @ labeled
with blocking represents the performance loss that the inter-thread blocking effect
causes on the one-queue ROB machine, by means of the following equation:

IPOblocking
IPCideal

Likewise, the curve labeled with holes plots the IPC loss of the semi-ideal
one-queue ROB machine that only suffers from the negative impact on perfor-
mance that holes at recovery incur. This curve is obtained by extracting the
I PClhoes performance value of an additional set of simulations, and using the
corresponding analogous I PCj,ss equation.

Results show that inter-thread blocking originates a performance loss of almost
21% when three tasks are active in the system, but this penalty is reduced to
less than 3% for two tasks sharing one ROB. On the other hand, the curve
corresponding to the holes at recovery effect shows only a slight performance
degradation for any number of tasks running on the system, mainly due to small
misprediction rates and fast holes draining.

IPCloss =1-

4.2 ROB Sharing Strategies

FigureBlshows the performance achieved by private, one-queue and paired ROBs
on steady multithreaded processors, ranging the sMT' D from 0 to 1, and explor-
ing 2-, 4-, and 8-threaded systems. This range represents a wide set of commer-
cial products that implement different number of hardware threads [T1][12]. The
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performance values shown here are computed by means of the IPCy(sMTD)
function, by following the steps presented in Section 311

In 2-threaded processors (Figure Bh), whose load is always steady by defini-
tion, a paired ROB groups both threads in a single ROB, so it is equivalent to
the one-queue ROB, as observed in the overlapped curves. When a 2-threaded
system is tested using a single task (sMTD = 0), performance increases by
more than 20% using the one-queue or paired ROB compared with the private
approach. On the opposite extreme, an sMTD = 1 makes private ROBs out-
perform the other sharing strategies by 12%.

We can also appreciate that the curves corresponding to all three sharing
strategies cut each other at an sMTD of approximately 0.8, meaning that a
larger sMT D is needed to make private ROBs stand out. In other words, private
ROBs are only preferable in terms of performance when two tasks are running
in the system for more than 80% of the time. This occurs frequently in systems
aimed at high performance computing, but it is not as common in personal
computers, where multithreading is being also implemented.

In a steady 4-threaded processor (Figure [b), the following observations can
be made. In the sMT D range [0...0.35], the one-queue ROB performs better than
private ROBs, but this behavior is inverted for the rest of sMT D values. The
advantages of paired ROBs can be clearly noticed in this figure. First, we can see
that paired ROBs constitute the best approach for sMTD = [0.2...0.55]. More-
over, it performs 16% and 13% better for extreme sMT Ds (i.e., 0 and 1, respec-
tively) compared to the worst approach in each case (i.e., private and one-queue,
respectively). The performance loss compared to the best approach in each case
is only 7% and 5%, respectively. These observations show paired ROBs as a
trade-off solution to improve single-thread performance in lightly loaded multi-
threaded environments, while exploiting thread level parallelism when multiple
tasks run on the system.

The steady 8-threaded processor (Figure Bk) shows similar results as the 4-
threaded processor, with an additional advantage for paired ROBs. Namely, the
range of sMT D values in which paired ROBs are the most appropriate solution
grows to [0.15...0.58]. Again, paired ROBs show up as a good trade-off ROB
sharing approach, which scales with the number of hardware threads in the
system.
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5 Related Work

Two previous works [7][I3] compare the performance of an aggressive shared
ROB, i.e., not affected by inter-thread blocking and holes at recovery, versus pri-
vate ROBs. Both papers conclude that the small performance benefits obtained
by these aggressive shared ROBs do not justify their higher implementation
complexity.

Other related works that study the impact of distributing the resources of the
SMT processor (including the ROB) assume a fixed sharing strategy. Sharkey et
al. [4] propose a dynamic private ROB sharing strategy that avoids thread star-
vation by not allocating ROB entries of memory bounded threads. El-Moursy
et al. [I4] use a private ROB configuration to explore the optimal resource par-
titioning of a Clustered Multi-Threaded (CMT) processor. In [5] and [6] an
aggressive shared ROB is distributed among the threads. In [5], Cazorla et al.
dynamically classify each thread by using a set of counters to properly assign
processor resources. In [6], Choi and Yeung propose a learning-based resource
partitioning strategy which relies on performance metrics that can be obtained
offline or during execution.

Finally, some research efforts [I5][16] are devoted to dynamically assign
threads to the back-ends of a given clustered multithreaded architecture. In
[15], each backend can only support one thread at a given execution time, al-
though thread switching is allowed by sharing the ROB temporarily. In [16], the
back-ends are heterogeneous and multithreaded. However, each thread has its
own private ROB.

6 Conclusions

In this paper, we have proposed paired ROBs as a new sharing strategy of the
ROB in SMT processors. By considering the number of available software tasks
allocated to hardware threads, we have developed an evaluation methodology
to compare paired ROBs with the fully private and fully shared approaches. As
a trade-off solution, paired ROBs minimize the effects known as inter-thread
blocking, holes at recovery and starvation, while conferring flexibility to allocate
ROB entries.

Experimental results show that paired ROBs provide higher performance than
private ROBs for sMT D values lower than 0.5 in 4- and 8-threaded processors.
For 2-threaded machines, paired ROBs outperform private ROBs for an sMT D
up to 0.8. In all cases, the implementation of paired ROBs has similar complexity
than private ROBs. This fact makes paired ROBs a cost-effective ROB sharing
scheme.
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