POGGI: Puzzle-Based Online Games on
Grid Infrastructures*

Alexandru Iosup

Electrical Eng., Mathematics and Computer Science Department
Delft University of Technology, Delft, The Netherlands
A.Tosup@tudelft.nl

Abstract. Massively Multiplayer Online Games (MMOGs) currently
entertain millions of players daily. To keep these players online and gen-
erate revenue, MMOGs are currently relying on manually generated con-
tent such as logical challenges (puzzles). Under increased demands for
personalized content from a growing community, it has become attrac-
tive to generate personalized puzzle game content automatically. In this
work we investigate the automated puzzle game content generation for
MMOGs on grid infrastructures. First, we characterize the requirements
of this novel grid application. With long-term real traces taken from
a popular MMOG we show that hundreds of thousands of players are
simultaneously online during peak periods, which makes content gen-
eration a large-scale compute-intensive problem. Second, we design the
POGGI architecture to support this type of application. We assess the
performance of our reference implementation in a real environment by
running over 200,000 tasks in a pool of over 1,600 nodes, and demon-
strate that POGGI can generate commercial-quality content efficiently
and robustly.

1 Introduction

Massively Multiplayer Online Games (MMOGs) have emerged in the past decade
as a new type of large-scale distributed application: real-time virtual world sim-
ulations entertaining at the same time millions of players located around the
world. In real deployments, the operation and maintenance of these applications
includes two main components, one dealing with running the large-scale simu-
lation, the other with populating it with content that would keep the players
engaged (and paying). So far, content generation has been provided exclusively
by human content designers, but the growth of the player population, the lack of
scalability of the production pipeline, and the increase in the price ratio between
human work and computation make this situation undesirable for the future. In
this work we formulate and investigate the problem of automated content gen-
eration for MMOGs using grids.

* We gratefully thank Dr. Dick Epema and the Delft ICT Talent Grant for support,
and Dr. Miron Livny for access to the experimental environment.

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 390 2009.
© Springer-Verlag Berlin Heidelberg 2009

POGGI: Puzzle-Based Online Games on Grid Infrastructures 391

MMOGs are increasingly present in people’s lives and are becoming an im-
portant economic factor. The number of players has increased exponentially over
the past ten years [I], to about 25 million players at the end of 2008 [IL2]. Suc-
cessful MMOGs such as World of Warcraft and Runescape number each over
3,000,000 active players.

There are many types of content present in MMOGs, from 3D objects popu-
lating the virtual worlds, to abstract challenges facing the players. The MMOG
operators seek from these content types the ones that entertain and challenge
players for the longest time, thus leading to revenue [3]. Puzzle games, that
is, games in which the player is entertained by solving a logical challenge, are
an important MMOG content type; for instance, players may spend hours on a
chess puzzle [4l[5] that enables exiting a labyrinth. Today, puzzle game content is
generated by teams of human designers, which poses scalability problems to the
production pipeline. While several commercial games have made use of content
generation [6L[7,[8,9], they have all been small-scale games in terms of number of
players, and did not consider the generation of puzzle game content. In contrast,
in this work we address a new research topic, the large-scale generation of puzzle
game instances for MMOGs on grid infrastructures.

Invented and promoted by industry, MMOGs have recently started to at-
tract the interest of the distributed systems [10] and database [I1] communities.
However, these communities have focused so far on resource management for
large-scale MMOGs, spurring a host of results in resource provisioning [2], scal-
ability [I2[13], etc. for the world simulation component. In this work we propose
the new research direction of generating (puzzle game) content for MMOGs.
Towards this end, our contribution is threefold:

1. We formulate the problem of puzzle game generation as a novel large-scale,
compute-intensive application different from typical applications from grids
and parallel production environments (Section [2]);

2. We propose an application model (Section[3]) and an architecture (Section H)
for generating puzzle games at large scale;

3. We show through experiments in a real environment that our proposed ar-
chitecture can generate content of commercial quality (Section [H).

2 Problem Formulation
In this section we formulate the problem of generating puzzle content for MMOGs.

2.1 The Need for Automatic Puzzle Content Generation

Puzzle games have two attractive characteristics: they can be embedded in
MMOGs such as World of Warcraft to keep online the players who prefer think-
ing over repetitive activities, and they are preferred over other genres by the
majority of the online game players [14], p.24]. However, the current industry ap-
proach for puzzle content generation does not scale. Due to the business model
associated with MMOGs, in which the content is the main factor in attracting

392 A. Tosup

25x16

20x16

il

1.5x 16 L

1.0x 16 [§

Total number of uses

0.5x 16 -

! “M I\w !

i i i i H
O'(:')(1‘\51—01 12-01 01-01 02-01 03-01 04-01 05-01 06-01
2007 2007 2008 2008 2008 2008 2008 2008
Date/Time

Fig. 1. The number of Active Concurrent Players in the RuneScape MMOG between
Nov 1, 2007 and Jul 1, 2008. Each month is depicted with a different type of line.

and retaining paying players [3], game operators prefer with few exceptions to
generate the content in-house. Thus, the current market practice is to employ
large teams of (human) designers for game content generation. On major titles,
teams of 50 people or more can be involved with the content creation pipeline
at the same time; for increased scalability such teams are broken down into pro-
duction units of several persons each under a production hierarchy, which raises
the production cost. The manual content generation approach does not scale
to larger teams, due to cost and time overheads. This problem is made more
difficult by the impossibility to know in advance how the player population will
evolve over time: for some MMOGs the population will ramp up or scale down
in a matter of weeks or even days [2].

2.2 Challenges in Puzzle Game Content Generation for MMOGs

We identify two main challenges in solving the problem of puzzle content gen-
eration for MMOGs: puzzle difficulty balance and scalability to large numbers
of players. Failing to meet any of these challenges has a direct impact on rev-
enues: it leads to a degraded game experience and causes the players to leave
the game [3[15].

The MMOG players gain virtual reputation with their ability to excel in game
activities such as puzzle solving. Thus, the puzzle game instances that various
players solve must be matched with the player ability, and be comparable in
difficulty for players of the same ability; we call this combined challenge the
puzzle difficulty balance.

The ability to scale to the large numbers of players specific to MMOGs means
that enough puzzle game instances are available for each player requiring them,
so that the response time after requesting an instance is very low; we call this the
scalability challenge. While popular MMOGs may have millions of users, only a
fraction are active at the same time, the Active Concurrent Players (ACP) [3].
Thus, the number of puzzle game instances needed at any time is limited by the
peak ACP volume. To understand the ACP variation over time we have collected

POGGI: Puzzle-Based Online Games on Grid Infrastructures 393

Table 1. Comparison between the Puzzle Generation workloads and the workloads of
grid and parallel production environments (PPEs)

Workload Type

Puzzle Gen. Grids [16] PPEs [17]
Users 100,000s 10s-100s 10s-100s
Performance metrics HTC and HPC HPC [I8] HPC [19]
Workload Very Dynamic Dynamic Static
Response Time Very Low High Very High
of Jobs/Result 10s-1,000s 10s-100,000s 1-100s
Task coupling Workflows Workflows, Bags-of-Tasks Parallel, Single

traces from RuneScape, the second-most popular MMOG by number of active
players. The operators of RuneScape publish official ACP counts through a web
service interface; only the ACP count for the last few seconds is available. We
have collected over 8 months of ACP count samples with a 2-minute sampling
interval. Figure [Il shows that for RuneScape the daily ACP peaks are between
100,000 and 250,000 players world-wide. (Peaks are several hours long.)

2.3 Puzzle Content Generation Using Grid Infrastructures

Our vision is that the puzzle game content will be automatically generated by a
computing environment that can dynamically adjust to a large-scale, compute-
intensive, and highly variable workload. Grid environments and to some extent
even today’s parallel production environments (PPEs) match well the descrip-
tion of this environment. However, whether these environments can support
the MMOG puzzle generation workloads and their associated challenges is an
open research question. Table [Il compares the characteristics of the MMOG
workloads with those of the typical workloads present in these environments.
Both the current grids and PPEs serve two-three orders of magnitude fewer
users than needed for MMOGs. Grids and PPEs handle well dynamic and static
workloads, but have problems dealing with the very dynamic workload charac-
teristics of MMOGs (such as bursts of jobs). The response time model for grid
and PPE applications permits middleware overheads higher than what is ac-
ceptable for MMOG workloads. Efficiently running in grids large workflows or
large numbers of related jobs to produce a unique final result are active research
topics [20,21].

For the moment, we do not see as viable an approach in which the machines
of the players are used to generate content without some form of supervision
or verification. Though the machines of the active players may have enough
spare cycles, as in MMOGs players compete with each other for virtual or even
real-world gains, cheating can be financially profitable. Moreover, the game de-
velopers do not want to give away their content generation algorithms, which
are an important competitive advantage, even in binary form. More work on
distributed trust is digital rights management is needed before such an approach
can be viable.

394 A. Tosup

Generate
Setup

Yes

Test Solution
Optimality/Suitabilit;

if
No Solution Meets Yes
Difficulty Setting End

Fig. 2. The workflow structure of a generic Puzzle game instance generator

3 Application Model

In this section we model puzzle content generation as a workflow; ours is the
first workflow formulation for this novel application domain.

The puzzle game generation application consists of two main functional phases:
generating a solvable puzzle game instance and finding a solution for it, and testing
that the proposed solution is minimal in solving effort. The second phase addresses
the puzzle difficulty balance challenge (see Section [Z2)), so that players cannot
solve a generated puzzle in a simpler way. The two functional phases are executed
until both complete successfully, or until the time allocated for their execution is
exceeded. Thus, our puzzle generation application is one of the first iterative grid
workflows; given the number of iterations observed in practice (see Section[5.2), it
is also one of the largest.

3.1 Workflow Structure

We model the generic puzzle game generation application as the workflow with
seven levels depicted in Figure Bl Generate Setup, Find and Verify Solution, if
Solution, Test Solution Optimality/Suitability, if Passed Test, Record Setup and
Solution, and if Solution Meets Difficulty Settings. The first three (the following
two) levels correspond to the first (second) functional phase of the workflow; the
other levels are added for output and ending purposes.

The Generate Setup level generates a puzzle game setup, such as a board
and the pieces on it, that needs to be solved. The execution time of this level
depends on what functionality it provides: this level may be designed to generate
random setups including ones that break the rules of the puzzles, or include the
verification of the setup validity against the rules.

POGGI: Puzzle-Based Online Games on Grid Infrastructures 395

The Find and Verify Solution level solves the puzzle starting from the setup
generated in the previous level and using one of the many game solving tech-
niques to evolve from setup to the solution state; for reviews of these techniques
we refer to [22[23124]. Depending on the amenability of the puzzle to different
solving strategies, this level may employ algorithms from brute force search to
genetic algorithms, game-tree search, and SAT-solving. Regardless of the algo-
rithm employed, the execution time for this level is bounded by the maximum
execution time set by the application designer.

The Test Solution Optimality / Suitability level attempts to determine if
the found solution is optimal, and if it is suitable for being recorded (i.e., is
the solution of the right complexity, but also of the type that will entertain the
players?). Depending on the difficulty of testing these two aspects of the solution,
the execution time of this level may be similar to that of the Find and Verify
Solution level.

The if Solution Meets Difficulty Settings level was introduced at the end of
the workflow to ensure the recording of puzzle setups whose best solutions do
not meet the current difficulty settings, but have passed all the other tests and
may therefore be used for lower difficulty settings.

3.2 Example: The Lunar Lockout Puzzle

We demonstrate the use of the application model introduced in the previous
section by applying it to a sample puzzle game generation application: the gen-
eration of instances for the Lunar Lockout puzzle [25]. This commercial puzzle
is played on a board on which pins are placed from the start and may be moved
according to the following game rules to a goal position. A move consists of
pushing a pin either horizontally or vertically, until it is blocked by another
pin. The moved pin will be placed in the board cell just before the cell of the
blocking pin, considering the direction of the push. The moved pin cannot hop
over another pin or be moved outside the board. The goal is to place the X pin
on a target position. A solution consists of a time-ordered set of pin movements
leaving the ’X’ pin on the target position. The puzzle is characterized by the size
of the board N, the number of pins P, and the difficulty settings D (i.e., number
of moves for an entertaining solution depending on the player’s level). A puzzle
setup consists of N, P, and the initial position of the pins; see Section 5.1 for a
generated puzzle setup. The mapping of this application to a puzzle-generating
workflow is described below.

The Generate Setup level generates a random positioning of the pins on the
board, ensuring that the basic rules of the game are enforced, e.g., the pins do
not overlap.

The Find and Verify Solution level uses backtracking to solve the puzzle.
This corresponds to the situation common in practice where no faster solving
algorithms are known. The choice of backtracking also ensures low memory con-
sumption and efficient cache usage for today’s processors. This workflow level
stops when a solution was found.

396 A. Tosup

The Test Solution Optimality / Suitability level also applies backtracking to
find all the other solutions with a lower or equal number of movements (size).
This level needs to investigate moves that were not checked by the Find and
Verify Solution level; for backtracking this can be easily achieved with minimal
memory consumption and without redundant computation. If a solution with a
lower number of movements is found, it becomes the new solution and the process
continues. The solution suitability test verifies that the best found solution has
a minimum size that makes the puzzle interesting for its players, e.g., the size of
the solution is at least 4 for beginner players.

4 The POGGI Architecture

In this section we present the Puzzle-Based Online Games on Grid Infrastruc-
tures (POGGI) architecture for puzzle game generation on grid infrastructures.

4.1 Overview

The main goal of POGGI is to meet the challenges introduced in Section 2.2l In
particular, POGGI is designed to generate puzzle game content efficiently and at
the scale required by MMOGs by executing large numbers of puzzle generation
workflows on remote resources. We focus on three main issues:

1. Reduce execution overheads. First, by not throwing away generated content
that does not meet the current but may meet future difficulty settings (see the
last workflow level in SectionB]) our architecture efficiently produces in advance
content for future needs. Second, in previous work [26] we have found the job
execution overhead to be an important performance bottleneck of current grid
workflow engines; for this reason, no current (grid) workflow engine can be used
to handle the large number of tasks required by our application (see Section [(.2)).
To address this problem, we have developed a workflow engine dedicated to
puzzle content generation.

2. Adapt to workload variability. Using the long-term traces we have acquired
from one of the Top-5 MMOGs, we have recently shown [2] that MMOGs exhibit
high resource demand variability driven by a user presence pattern that changes
with the season and is also fashion-driven, and by a user interaction pattern that
changes with the gameplay style. We use detailed statistics of the puzzle use and
of the content generation performance to adapt to workload variability.

3. Use existing middleware. The architecture uses an external Resource Man-
agement Service (RMS), e.g., Condor [27], Globus and Falkon [28], to execute
reliably bags-of-tasks in which each task is a puzzle generation workflow, and to
monitor the remote execution environment. The architecture is also interfacing
with an external component, Game Content, which stores the generated content,
and which collects statistical data about the actual usage of this content.

4.2 Main Components

The six main components of POGGI are depicted in Figure Bl with rectangles
representing (nested) components, and arrows depicting control and data flows.

POGGI: Puzzle-Based Online Games on Grid Infrastructures 397

Generic
RMS

Player < Puzzle Use |4 Capacity
Acti\)//ity 8 Monitoring B Planning
Bag-of-Tasks [
Execution Enginej L Workflow
N Execution Engine
® B Environment _r for
Monitoring Puzzle Game

Puzzle ¢
Performance <
‘ Generation

Game CPUZZ|e < [Post-processing Configuration
ontent ‘
Content 2 3

Puzzle Game Generation

L

Performance
Analysis

h 4

Real-Time Game Operation ‘

Fig. 3. Overview of the POGGI architecture for puzzle game content generation

1. Workflow Ezxecution Engine for Puzzle Game Generation and 2. Post-
Processing: Generic workflow execution engines that can run the puzzle gen-
eration workflows (see Section Bl already exist [29,[30,31,32]. However, they
are built to run the workflow tasks on remote resources through the services
of the RMS, which leads to high communication and state management over-
heads [28,26]. In contrast to this approach, we introduce in our architecture a
specialized component for the execution of the puzzle generation workflows on
a single resource; we show in Section [f] that our workflow engine can handle the
large number of tasks required for puzzle content generation. While this compo-
nent can be extended to execute workflow tasks on multiple resources similarly
to the execution of bag-of-tasks by Falkon [28], the presence of thousands of
other workflow instances already leads to high parallelism with minimal exe-
cution complexity. The Post-Processing component parses the workflow output
and stores the generated content into a database.

3. Configuration: The generic workflow model introduced in Section B] can
generate content for all the difficulty levels, if the difficulty settings are set to
the maximum and the suitability level is set to the minimum. Then, all the
generated setups that are solvable are recorded. However, this configuration is
inefficient in that high difficulty states will be explored even for beginner players.
Conversely, settings that are too strict may lead to ignoring many possibly useful
setups. Thus, we introduce in the architecture a component to set the appropriate
configuration depending on the level of the players in need of new content.

4. Capacity Planning: As shown in Figure [Il the ACP volume reaches daily
peaks of twice the long-term average. In addition, the use of a specific puzzle game
may be subject to seasonal and even shorter-term changes. Thus, it would be in-
efficient to generate content at constant rate. Instead, the capacity planning com-
ponent analyzes the use of puzzles and the performance of the content generation
process and gives recommendations of the needed number of resources. Given the
high number of players, enough performance analysis data is present almost from
the system start-up in the historical records. We have evaluated various on-line
prediction algorithms for MMOG capacity planning in our previous work [2].

5. Performance Analysis: Detailed performance analysis is required to enable
the capacity planning component. The performance analysis component focuses

398 A. Tosup

on two important performance analysis aspects: extracting metrics at different
levels, and reporting more than just the basic statistics. We consider for perfor-
mance analysis job-, operational-, application-, and service-level metrics. The first
two levels comprise the traditional metrics that describe the execution of individ-
ual [19] and workflow [33] jobs. The application-level metrics and the service-level
metrics are specific to the puzzle generation application. At the application-level
the analysis follows the evolution of internal application counters (e.g., number
of states explored) over time. At the service-level the analysis follows the gener-
ation of interesting puzzle game instances. The performance analysis component
performs an in-depth statistical analysis of metrics at all levels.

6. Steering: To generate puzzle game instances, the various components of
our architecture need to operate in concert. The steering component triggers
the execution of each other component, and forcefully terminates the puzzle
generation workflows that exceed their allotted execution time. Based on the
capacity planning recommendations and using the services of the generic RMS,
it executes the puzzle generation workflows.

4.3 Implementation Details

We have implemented the Steering component of our architecture on top of the
GrenchMark [34,[26] grid testing tool, which can already generate and submit
multi-job workloads to common grid and cluster resource management middle-
ware such as Condor, Globus, SGE, and PBS. Thus, the POGGI architecture is
not limited to a single middleware, and can already operate in many deployed
environments. For this work we have extended the workload generation and man-
agement features of GRENCHMARK, in particular with the ability to generate
the bags-of-tasks comprising puzzle generation workflows.

We have built the Performance Analysis component on top of the GrenchMark
tool for analyzing workload execution, which can already extract performance
metrics at job and operational levels [26]. We have added to this component the
ability to extract performance metrics at the application and service levels.

5 Experimental Results

In this section we present our experimental results, which demonstrate that
POGGI can be used in real conditions to generate commercial-quality content.

We have performed the experiments in the Condor pool at U.Wisconsin-
Madison, which comprises over 1,600 processors. The system was shared with
other users; for all experiments we have used a normal priority account.

5.1 Lunar Lockout: Solved and Extended

The commercial version of the game [25] consists of a playing set and cards
describing 40 puzzle instances. These instances have been generated manually by
a team of three content designers over a period of about one year. The instances
can be characterized in our application model (see Section B:2) as N =5, P =

POGGI: Puzzle-Based Online Games on Grid Infrastructures 399

A

©
b x

®

Fig. 4. Lunar Lockout instance

36%

PDF [%
»
=

L M\\thum.mm..”“ b L

I L
0 100 200 300 400 500 600 700 800 900 1000
Explored Setups (millions

Fig.5. The PDF of the number of explored puzzle setups per workflow. Each bar
represents a range of 10 million puzzle setups.

4 — 6, and D such that the solution size ranges from 4 (beginner player) to
10 (advanced). During our experiments we have generated and solved all the
boards that come with the commercial version of the game. This demonstrates
that our architecture can be used to produce commercial-quality content much
faster than by using the manual approach.

In addition, we have generated automatically many new puzzle instances with
equal or larger boards (N > 5), more pins (P > 6), and solutions of up to 21
moves, corresponding to an expert play level that exceeds the human design
capabilities. Figure M depicts a sample setup that has been automatically gen-
erated for N = 5, P = 6, and D = { solution size > 8 for advanced players,
solution size > 4 for beginner players,...}. It turns out that the best solution
for moving the X pin to the target has 8 moves: A—Right, A—Down, X—Left,
A—Up, E-Up, A—Left, X—Down, and X—Left.

5.2 Application Characterization

To characterize the puzzle generation application we use a test workload com-
prising 10,000 workflows. Overall, the execution of this workload led to the

400 A. Tosup

Table 2. The number of interesting states found for each 1,000 jobs, per solution size.

Solution Size
Configuration 5 6 7 8 9 10 11 12 1314 1516 17 18 19 20 21
Normal 1,281 1,286 645 375230134 75 47 2711 6 1 2 - - - -
Large - - 409 334257 14717157 7983394124 222 3 7

evaluation of 1,364 billion of puzzle setups (tasks). The number of tasks is much
larger for puzzle content generation than for the largest scientific workflows; the
latter comprise rarely over a million of tasks [20].

The probability distribution function (PDF) of the number of explored puzzle
setups for this workload is depicted in Figure The distribution is skewed
towards left: most of the executed workflows explore fewer puzzle setups than
the average of the whole workload. This indicates that in most cases the workflow
termination condition (finding a puzzle setup that matches the difficulty settings)
is met faster than the workload average indicates.

5.3 Meeting the Challenges

We have identified in Section two main challenges for puzzle content gener-
ation, puzzle difficulty and scalability. We now show evidence that the POGGI
architecture can meet these challenges.

We first evaluate the impact of the application configuration on finding puzzle
instances of different difficulty. Two configurations are considered during this
experiment: workflows that explore a normal-sized space (normal instances),
and workflows that explore a large-sized space (large instances). Table 2] shows
the number of puzzle instances found for these two configurations. The normal
workflow instances find more puzzle instances with solution sizes up to 7. For
solution sizes of 8 through 12, both instances behave similarly. For solution sizes
of 13 and higher, the large workflow instances become the best choice. Based
on similar results and on demand the Capacity Planning component can issue
recommendations for efficiently finding unique instances of desired difficulty.

To show evidence of scalability we investigate the average response time and
the potential for soft performance guarantees. For the 10,000 workflows test
workload described in Section [5.2], the average workflow is computed in around
5 minutes; thus, it is possible to generate content for hundreds of thousands of
players on a moderately sized grid infrastructure.

We have also evaluated the application- and the service-level throughput over
time. We define the application-level (service-level) throughput as the number of
(interesting) puzzle setups explored (found) over the time unit, set here to one sec-
ond; for convenience, we use the terms states and puzzle setups interchangeably.
Figure [shows the evolution of application- and service-level throughput over
time. The architecture achieves an overall application-level throughput of over 15
million states explored per second, and an overall service-level throughput of over
0.5 interesting states discovered per second. The performance decreases with time

POGGI: Puzzle-Based Online Games on Grid Infrastructures 401

Application- and Service-Level Throughput1 .

35x16 1\ 142

20x16

30x 16
\ 110

25x16

= —
@ K4
9o @
15} 2
k) 5
]
3 z
2 5
=) £
3 A LA Jos ©
£ AUN e
F -y, S
= 20x 16 SRR £
> \/‘\ﬂ -2 106 T
) T ot e e SO F
< 15x16 3
c T
2 Joa 8
8 10x16 z
(& n
5x16 102
Application-Level Throughput —e—
Service-Level Throughput - &
0x16,

00h 02h 04h 06h 08h 10h 12h 14h 16h 18h 20h 22h 00I90
Time since test star

Fig. 6. The evolution of the application- and service-level throughput over time

due to Condor’s fair sharing policy: our normal user’s priority degrades with the
increase of resource consumption. The performance decrease becomes predictable
after about 6 hours. This allows a service provider to practically guarantee service
levels, even in a shared environment. These experiments also demonstrate the abil-
ity of our architecture to extract application- and service-level metrics.

6 Related Work

In this section we survey two areas related to our work: game content genera-
tion, and many-tasks applications. We have already presented in Section 2.1l the
current industry practice.

The topic of automated (procedural) generation has already been approached
by the industry as an alternative to manual content generation. In 1984, the
single-player game Elite [6] used automated game content generation to simulate
a large world on an 8-bit architecture. Since then, several other games have used
a similar approach: ADOM [7] generates battle scenes that adapt dynamically to
the player level, Diablo [§] generates instances of enclosed areas for the player to
explore, The Dwarf Fortress [9] generates an entire world from scratch, etc. All
these approaches were games with a small numbers of concurrent players or even
with a single player, and generated content on the (main) player’s machine. In
contrast, this work focuses on the efficient generation of puzzle game instances
for MMOGs, using a large resource pool as the computing infrastructure.

Until a few years ago, few environments existed that could manage the high
number of jobs required by MMOGs, among them SETT@Home [35]. More re-
cently, tools such as Falkon [28] and Swift (through Falkon) have started to ad-
dress the problem of executing with low overhead large numbers of bags-of-tasks
and workflows, respectively. In contrast with all these approaches, our archi-
tecture optimizes the execution of a specific application (though with a much
wider audience) and specifically considers dynamic resource provisioning adjust-
ments to maintain the performance metrics required by application’s commercial
focus.

402 A. Tosup

7 Conclusion and Ongoing Work

With a large and growing user base that generates large revenues but also raises
numerous technological problems, MMOGs have recently started to attract the
interest of the research community. In this work we are the first to identify
the problem of the scalability of content generation. To address this problem,
we have designed an implemented POGGI, an architecture for automatic and
dynamic content generation for MMOGs. Our architecture focuses on puzzle
game content generation, which is one of the most important components of
the generic game content generation problem. Experimental results in a large
resource pool show that our approach can achieve and even exceed the manual
generation of commercial content.

Currently, we are extending our architecture with more game content types
and with mechanisms for malleable workflow execution. For the future, we plan
make POGGI less domain-specific, towards generic scientific computing support.

References

1. Woodcock, B.S.: An analysis of mmog subscription growth. Online Report (2009),
http://www.mmogchart.com
2. Nae, V., Iosup, A., Podlipnig, S., Prodan, R., Epema, D.H.J., Fahringer, T.:
Efficient management of data center resources for massively multiplayer online
games. In: ACM/IEEE SuperComputing (2008)
Bartle, R.: Designing Virtual Worlds. New Riders Games (2003) ISBN 0131018167
Kasparov, G.: Chess Puzzles Book. Everyman Chess (2001)
Polgar, L.: Chess: 5334 Problems, Combinations and Games. Leventhal (2006)
Braben, D., Bell, I.: “Elite”, Acornsoft, 1984 (2009),
http://www.iancgbell.clara.net/elite/
Biskup, T.: “ADOM?”, Free (1994), http://www.adom.de/| (2009)
8. Schaefer, E., et al.: “Diablo I”, Blizzard Entertainment (1997),
http://www.blizzard.com/us/diablo/| (2009)
9. Adams, T.: “Dwarf Fortress”, Free (2006),
http://www.bayl2games.com/dwarves/| (2009)
10. Neumann, C., Prigent, N., Varvello, M., Suh, K.: Challenges in peer-to-peer gam-
ing. Computer Communication Review 37(1), 79-82 (2007)
11. White, W.M., Koch, C., Gupta, N., Gehrke, J., Demers, A.J.: Database research
opportunities in computer games. SIGMOD Record 36(3), 7-13 (2007)
12. White, W.M., Demers, A.J., Koch, C., Gehrke, J., Rajagopalan, R.: Scaling games
to epic proportion. In: ACM SIGMOD ICMD, pp. 31-42. ACM, New York (2007)
13. Miiller, J., Gorlatch, S.: Rokkatan: scaling an rts game design to the massively
multiplayer realm. Computers in Entertainment 4(3) (2006)
14. The Entertainment Software Association, “2008 annual report,” Technical Report,
http://www.theesa.com| (November 2008)
15. Fritsch, T., Ritter, H., Schiller, J.H.: The effect of latency and network limitations
on mmorpgs: a field study of everquest2. In: NETGAMES. ACM, New York (2005)
16. Tosup, A., Dumitrescu, C., Epema, D.H.J., Li, H., Wolters, L.: How are real grids
used? the analysis of four grid traces and its implications. In: GRID, pp. 262-269.
IEEE, Los Alamitos (2006)

S G W

=

http://www.mmogchart.com
http://www.iancgbell.clara.net/elite/
http://www.adom.de/
http://www.blizzard.com/us/diablo/
http://www.bay12games.com/dwarves/
http://www.theesa.com

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

POGGI: Puzzle-Based Online Games on Grid Infrastructures 403

Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling
the characteristics of rigid jobs. J. PDC 63(11), 1105-1122 (2003)

Tosup, A., Epema, D.H.J., Franke, C., Papaspyrou, A., Schley, L., Song, B.,
Yahyapour, R.: On grid performance evaluation using synthetic workloads. In:
Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2006. LNCS, vol. 4376, pp.
232-255. Springer, Heidelberg (2007)

Feitelson, D.G., Rudolph, L.: Metrics and benchmarking for parallel job scheduling.
In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP
1998. LNCS, vol. 1459, pp. 1-24. Springer, Heidelberg (1998)

Raicu, 1., Zhang, Z., Wilde, M., Foster, 1., Beckman, P., Iskra, K., Clifford, B.:
Toward loosely-coupled programming on petascale systems. In: ACM/IEEE Su-
perComputing (2008)

Tosup, A., Sonmez, O.0., Anoep, S., Epema, D.H.J.: The performance of bags-of-
tasks in large-scale distributed systems. In: HPDC, pp. 97-108 (2008)

Conway, J.H.: All games bright and beautiful. The American Mathematical
Monthly 84(6), 417-434 (1977)

Bouzy, B., Cazenave, T.: Computer go: An ai oriented survey. Artificial Intelli-
gence 132, 39-103 (2001)

Demaine, E.D.: Playing games with algorithms: Algorithmic combinatorial game
theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136,
pp. 18-32. Springer, Heidelberg (2001)

Yamamoto, H., Yoshigahara, N., Tanaka, G., Uematsu, M., Nelson, H.: Lunar
Lockout: a space adventure puzzle, ThinkFun (1989)

Stratan, C., Iosup, A., Epema, D.H.J.: A performance study of grid workflow en-
gines. In: GRID, pp. 25-32. IEEE, Los Alamitos (2008)

Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the
condor experience. Conc.&Comp.: Pract.&Exp. 17, 323-356 (2005)

Raicu, 1., Zhao, Y., Dumitrescu, C., Foster, .T., Wilde, M.: Falkon: a fast and
light-weight task execution framework. In: ACM/IEEE SuperComputing (2007)
Singh, G., Kesselman, C., Deelman, E.: Optimizing grid-based workflow execution.
J. Grid Comput. 3(3-4), 201-219 (2005)

Ludaéscher, B., et al.: Scientific workflow management and the Kepler system. Conc.
& Comp.: Pract. & Exp. 18(10), 1039-1065 (2006)

Oinn, T.M., et al.: Taverna: lessons in creating a workflow environment for the life
sciences. Conc. & Comp.: Pract. & Exp. 18(10), 1067-1100 (2006)

von Laszewski, G., Hategan, M.: Workflow concepts of the Java CoG Kit. J. Grid
Comput. 3(3-4), 239-258 (2005)

Truong, H.L., Dustdar, S., Fahringer, T.: Performance metrics and ontologies for
grid workflows. Future Gen. Comp. Syst. 23(6), 760772 (2007)

Tosup, A., Epema, D.H.J.: GrenchMark: A framework for analyzing, testing, and
comparing grids. In: CCGrid, pp. 313-320. IEEE, Los Alamitos (2006)

Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.:
“SETI@Home”. Commun. ACM 45(11), 56-61 (2002)

	POGGI: Puzzle-Based Online Games onGrid Infrastructures
	Introduction
	Problem Formulation
	The Need for Automatic Puzzle Content Generation
	Challenges in Puzzle Game Content Generation for MMOGs
	Puzzle Content Generation Using Grid Infrastructures

	Application Model
	Workflow Structure
	Example: The Lunar Lockout Puzzle

	The POGGI Architecture
	Overview
	Main Components
	Implementation Details

	Experimental Results
	Lunar Lockout: Solved and Extended
	Application Characterization
	Meeting the Challenges

	Related Work
	Conclusion and Ongoing Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

