
Provider-Independent Use of the Cloud

Terence Harmer, Peter Wright, Christina Cunningham, and Ron Perrott

Belfast e-Science Centre, The Queen’s University of Belfast, Belfast BT7 1NN, UK
{t.harmer,p.wright,c.cunningham,r.perrott}@besc.ac.uk

Abstract. Utility computing offers researchers and businesses the po-
tential of significant cost-savings, making it possible for them to match
the cost of their computing and storage to their demand for such re-
sources. A utility compute provider enables the purchase of compute
infrastructures on-demand; when a user requires computing resources a
provider will provision a resource for them and charge them only for their
period of use of that resource. There has been a significant growth in the
number of cloud computing resource providers and each has a different
resource usage model, application process and application programming
interface (API)—developing generic multi-resource provider applications
is thus difficult and time consuming. We have developed an abstraction
layer that provides a single resource usage model, user authentication
model and API for compute providers that enables cloud-provider neu-
tral applications to be developed. In this paper we outline the issues in
using external resource providers, give examples of using a number of
the most popular cloud providers and provide examples of developing
provider neutral applications. In addition, we discuss the development
of the API to create a generic provisioning model based on a common
architecture for cloud computing providers.

1 Introduction

Utility computing offers researchers and businesses the potential of significant
cost-savings in that it is possible for them to match the cost of their computing
and storage to their demand for such resources. Thus, a user needing 100 compute
resources for 1 day per week may purchase those resources only for the day they
are required. A utility provider may also enable the allocation of storage to hold
data and network bandwidth for access to a user’s applications and services.
Again, this enables a user to match their storage and network capacity to meet
their needs. More generally, it is possible for a business or researcher to work
without owning any significant infrastructure and rely on providers when they
need a compute infrastructure.

On-demand provision of resources to users has been around for some time with
grid computing services, such as the UK National Grid Service[1] and the US
TeraGrid[2], but they have largely been job focused rather than service-focused.
In these infrastructures the goal is to optimise the compute jobs that are being
requested by users—delivering the fastest compute for users and making the best
use of the fixed compute infrastructure.

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 454–465, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Provider-Independent Use of the Cloud 455

With the success of the cloud computing paradigm[3], dynamic infrastruc-
tures have become popular. As a result of the increased commercial demand,
there are more providers offering infrastructure on-demand—such as Amazon
EC2[4], Flexiscale[5], AppNexus[6], NewServers[7] and ElasticHosts[8]. Sun have
also announced plans to become a cloud provider/. Most vendors provide wholly
virtual servers where a user provisions an infrastructure by providing a vir-
tual machine (VM). Within a VM a user can bundle applications, services and
data together in the same package. VMs usually give reduced performance when
compared to the native compute resource but do enable the provider to share
its resources in a secure and reliable manner. However, there are vendors that
offer physical machines on-demand, such as NewServers, that are suited to high
computation/IO applications.

1.1 Why Are Resource Providers Interesting to Us?

At the Belfast e-Science Centre, our interest is in creating dynamic service-
focused infrastructures which are primarily in the media[9][10] and finance[11]
sectors. Media and finance are challenging domains to develop applications for
in that:

– they require high computational throughput with millisecond-based quality
of service—for example to create a particular video format for a user as they
request to view it;

– they have high security requirements by the nature of the value of the data
that is processed and the legislation that regulates the sectors—for example,
in communicating the details of the ownership of shares; and

– they are subject to rapid peaks and troughs in demand—for example, in a
volatile day trading volumes can double in minutes as traders react to news
(and other trader behaviour!)

We have developed a framework of services that enables our applications to be
deployed and configured on demand within a fixed infrastructure. In developing
our application it quickly became clear that the peaks and troughs in demand
could best be accommodated using on-demand providers to supplement a fixed
infrastructure. More recently, we have created and deployed services for com-
mercial and research partners where none of the infrastructure was owned by
the user and instead relied entirely on cloud resource providers.

We have worked on extending our dynamic deployment services from support-
ing only owned and fixed compute resources to include resources allocated on
demand by cloud resource providers. To do this our support software needed a
way to provision resources, configure those resources, deploy software onto the
resources and, when its task was complete, discard the allocated resources–all
whilst providing accounting for the resources that were used. Investigation turned
up no standard cloud API; the closest is the Eucalyptus[12] open source provider
codebase, however it is a clone of the EC2 API. It does not seem likely that a
standard model for cloud computing providers will appear soon given the speed
at which cloud vendors are innovating and enhancing their services. In addition

456 T. Harmer et al.

(given the competition between providers) it seems unlikely at this stage that
many providers would believe it in their interest to create or comply with a
common API.

1.2 What Is Involved in Using an On-Demand Cloud Provider?

Cloud computing is an increasingly compelling prospect for researchers, start-
ups and large organisations, either as a substitution for owned hardware or to
bolster their existing infrastructure in high-load scenarios. Multiple providers are
emerging, offering different features such as hardware load-balancing, physical
(rather than virtual) resources, and private VLANs capable of multicast. These
are attractive because of the low cost of use when compared to buying, refreshing
and supporting a large infrastructure.

Fig. 1. A traditional multi-cloud application

It is in the interest of providers to have their own APIs as this simplifies their
development task, fitting (perfectly) their business model and their implementa-
tion. However, these varying APIs complicate service clouds, such as our media
and financial applications, that wish to sit on top of multiple cloud vendors
that provide physical resources. Ideally, these applications should be written
in a provider agnostic fashion using the cheapest resources when they are re-
quired and switching between providers when there are cost savings in doing so
(Fig. 1). Unfortunately, the application must currently be aware of the provider
being used, their utility model and their API. This makes developing applica-
tions that can use multiple providers difficult to write and maintain because you
must be aware of the benefits and drawbacks of particular providers.

In addition, APIs are also evolving with new functionality, operating systems,
SLA terms, pricing and resource specifications. Keeping up-to-date with the
latest API changes can be time-consuming and can mean that applications are
fixed to particular vendors and compute resources.

As an illustration of the complexities faced by various developers working
in the cloud, we consider a simple and basic task in using a cloud provider –
instantiate the cheapest machine available and display its instance identity and

Provider-Independent Use of the Cloud 457

IP address. We present Java code for 3 providers: Amazon EC2, Flexiscale and
NewServers. (The APIs have been simplified for readability, however real use is
nearly identical to what is presented here).

NewServers. NewServers provides on-demand access to native (bare-metal)
compute resources. The simplicity and minimalism of their API is interesting
to us however, since it provides a good model for small home-grown academic
clouds.
St r ing s i z e = ‘ smal l ’ ; // 2 .8GHz Xeon , 1GB RAM, 36GB d isk
St r ing os = ‘ centos5 . 2 ’ ;

// c r ea t e & s t a r t
Server s e r v e r = newservers . addServer (s i z e , os) ;

S t r ing i n s t I d = se rv e r . ge t Id () ;
S t r ing ip = se rv e r . getPubl icIP () ;

System . out . p r i n t f (‘ In s tance %s has IP %s \n ’ , in s t Id , ip) ;

From their API we know that “small” is their most basic machine with a
2.8GHz Xeon and 1GB of RAM. We choose that, deploying a CentOS 5.2 image
onto it. Once we call addServer, the server is created and started and its details
are displayed. We can query their API for a list of available template machines
and operating systems and their costs; we’ve elected not to do that in this case.

Flexiscale. Flexiscale is a cloud resource provider that supports deployment of a
range of VM types. It provides near native network support capability: providing
VLANs and multicast, for example, with high levels of VM quality of service
and support for automatic re-deployment in the event of failure. The objective
is to create an easy-to-use mechanism with near native machine capability and
automated resilience.

St r ing i n s t I d = ‘MyNewServer ’ ; // User−as s igned id

// Get d e f au l t hos t ing package , VLAN, and OS
Package fxPackage = f l e x i s c a l e . l i s tPackage s () . get (0) ;
Vlan fxVlan = f l e x i s c a l e . l i s tV l an s () . get (0) ;
OSImage os = new OSImage (2 7) ; // Ubuntu

Server s = new Server () ;
s . setName (in s t an c e I d) ;
s . s e tD i sk capac i t y (4) ; // 4GB d i sk
s . s e tP ro c e s s o r s (1) ; // 1 CPU
s . setMemory (512) ; // 512MB RAM
s . se tPackage id (fxPackage . id) ;
s . setOperat ingSystem (os) ;
s . s e t I n i t i a lPa s swo rd (‘ changeme ’) ;

f l e x i s c a l e . c r e a t eS e rv e r (s , fxVlan) ; // a l l o c a t e
f l e x i s c a l e . s t a r t S e rv e r (in s t Id , ‘ no notes ’) ; // s t a r t

S t r ing ip = f l e x i s c a l e . l i s t S e r v e r s (i n s t I d) [0] . getIP (0) ;

System . out . p r i n t f (‘ In s tance %s has IP %s \n ’ , in s t Id , ip) ;

458 T. Harmer et al.

In the above code we acquire our hosting package, default VLAN and a pointer
to the Ubuntu system image. We create a new server with 1 CPU, 512MB RAM
and 4GB local disk. Once created, we start the machine and then request its de-
tails from the API to determine the IP address. With Flexiscale we must know
the valid CPU, RAM, OS combination—this is available in a table on their API
site. With the Flexiscale API we can allocate our VMs to specific VLANs, en-
abling applications to have secure and good low-level control of communications.
Flexiscale must create a machine image when requested and so turnaround time
is about 10 minutes and often it is useful to create a resource in advance of
when it might be required by an application. This can complicate scaling to
meet changes in application demand.

Amazon EC2. Amazon is the largest and most widely known cloud compute
provider that uses a proven infrastructure (Amazon’s own infrastructure) and
enables rapid scaling of resources by a user. Amazon provides hosting capabilities
in the US and in Europe.
RunInstancesRequest req = new RunInstancesRequest () ;
req . setImageId (‘ ami−1c5db975 ’) ; // Ubuntu
req . setKeyName (‘ someAuthKey ’) ; // pre l oaded roo t ssh key
req . setPlacement (‘ us−east−1a ’) ; // the datacent r e
// 1GHz xeon , 1 .7GB RAM, 150GB d isk
req . set InstType (‘m1. smal l ’) ;

// a l l o c a t e & s t a r t
Reservat ion r e s = ec2 . run In s tances (req) . ge tRese rvat ion () ;

S t r ing id = r e s . ge t In s tance () [0] . ge t In s tance Id () ;
S t r ing ip = r e s . ge t In s tance () [0] . getPublicDNS () ;

System . out . p r i n t f (‘ In s tance %s has IP %s \n ’ , id , ip) ;

With EC2, we specify the exact Amazon Machine Image for an Ubuntu oper-
ating system, an authentication key to secure SSH access, a datacentre (“us-east-
1a”) to place our VM in, and the name of the cheapest template (“m1.small”).
EC2 runs as a large compute cloud that allocates resources in different physi-
cal datacentres (EC2 sub-clouds). With EC2 you must initially pre-store a VM
image with Amazon and record Amazon’s unique identity for that image. When
deploying you must be careful to ensure that each VM compute resource you
create is within the same datacentre sub cloud—this will improve performance
but also avoids significant charges for inter-cloud bandwidth. It is also necessary
to know the type of OS instance that is permissible—this is available from a
table on their API site. EC2 boots VMs very quickly, giving a low turnaround
time and enabling rapid scaling of infrastructure.

1.3 Lessons from Existing Cloud Provider APIs

As we can see from the previous examples, the initialisation and use of a re-
source in a resource provider varies significantly in implementation details. Some
providers let you specify exact machine configurations while others have sets

Provider-Independent Use of the Cloud 459

of configurations to choose from when requesting a resource. Some allow user-
assigned resource identifiers while others allocate an identifier for you. The usage
models are different also. Some models have the concept of a “stopped machine”;
others consider stopping to be analogous to discarding.

To create a generic, cloud-provider independent application, a simple consis-
tent API is necessary that provides a consistent and flexible provider API and
resource usage model. Such an API would allow users to specify requirements
(such as RAM size, CPU performance, disk space) and enable a rich set of fil-
ters that match requirements with provider capabilities. In addition, the model
would permit a consistent and simple resource model that attempts to hide the
particular details of resource providers.

2 Our Abstraction Layer

Our need for an abstraction layer (Fig. 2) to provide a generic cloud provider
was rooted in a number of our project applications which created highly dynamic
service-based infrastructures[3][9][10] which

– were deployed and managed dynamically;
– used autonomic management services to control and monitor the infrastruc-

ture;
– that scaled to match user demand; and
– employed location-aware services to optimise user access and comply with

data processing regulations.

Based on our experience of using cloud providers and their evolution over time
(as well as where we see them going in the future) we formed an outline usage
model which we see as common to them all:

1. Find viable compute resources (based on properties such on CPU speed,
memory, disk capacity, etc.)

2. Select the best match from those available (based on specification/price and
the trade-off from the options available from the resource vendors)

3. Configure compute resource parameters (such as OS, firewall, storage, etc)
4. Instantiate a box using that configuration

Fig. 2. Multi-cloud applications with our abstraction layer

460 T. Harmer et al.

5. User does some work on the box
6. Discard the compute resource

This model is intentionally simple and attempts to reflect an ideal for the applica-
tionuserwhowishes to specify resourceswithout knowing the internal behaviour of
the resource provider. Currently, when developing cloud applications, Step 1: Find
viable compute resources and Step 2: Select the best match, are performed manu-
ally by the development/deployment team in creating/deploying the application,
limiting the extent to which an application can dynamically take advantage of new
resource types and requiring the implementation team to refine an application to
take advantage of benefits of new vendors or machine types/pricing.

Fig. 3. Simple management model

In essence, our workflow (Fig. 3), reflecting our usage model, is find, instan-
tiate, manage and discard. There is an increased focus on predictability within
the cloud provider community to encourage traditional business IT to use cloud
technology. For example, Amazon has recently-announced a Service Level Agree-
ment (SLA) to bring them in line with other cloud providers. These SLAs aim
to provide, for example, a quantifiable up-time for their resources and penalty
clauses if this is not met. In addition, a large-scale EU project, SLA@SOI[13],
aims to make SLA negotiation a core part of its resource provisioning model
with resource providers chosen to satisfy SLA requirements and being expected
to enforce SLA requirements.

Fig. 4. Expanded management model

To allow for this concept of predictability we add a reserve stage (Fig. 4) to
allow users to indicate their near-term interest in allocating some resource–that
may incur a small cost with some providers. This smoothes out the differences
between providers who do have the concept (e.g. Flexiscale) and those who do
not (e.g. Amazon) and will in the future allow calls to enable the provider to
keep ahead of demand by requiring reservation and potentially minimising the
number of hosting machines switched on at any given time.

We see the role of the resource provider, once the resource has been allocated,
as completely behind the scenes—communication and control of the allocated
resource is identical to every other machine in the user’s datacentre. Thus, we

Provider-Independent Use of the Cloud 461

talk about the dynamic resources as “boxes” to indicate that the vendor is pro-
viding nothing more than a machine with an OS preinstalled that is configured
according to the user’s specification.

So, with our model resource providers are called Box Providers ; they offer
various Box Templates that describe properties of the boxes they can allocate.
These templates define the type of box, how it can be configured and define
the pricing structures and usage policies for the box. The templates can then
be queried by generic questions like “How much would 48 hours of uptime with
1GB of internet transfer up and 10GB down cost me?” or specific questions for
particular providers “How much is 50GB of transfer to Amazon S3 going to cost
me?”. The use of templates completely isolates programs from the variations
in pricing and available resources, making the process naturally extensible. A
user’s focus is on the type of resource they require with the allocation process
finding a provider to satisfy the generic resource request and the non-functional
requirements (such as price) that might be appropriate.

Once a template has been chosen it may be reserved with particular config-
uration properties—for example, setting the required OS, firewall rules, storage
mounts, etc. At a later stage the reservation can then be instantiated, giving a
Box Instance which can be managed, queried and finally discarded.

Allocating a Resource with Our Abstraction. Using our layer, the previous
examples do not change much:
EC2Credentials account = . . . ;
BoxProvider p rov ide r = new EC2BoxProvider (account) ;

// Use the cheapes t t emp la te t h i s prov i der knows about
BoxTemplate templ = BoxTemplateHelper . cheapest (p rov ide r) ;

// Deploy 1 ubuntu box wi th q u i c k s t a r t d e f a u l t s
BoxConfiguration os = BasicBoxConfig . getUbuntu (templ) ;
ReservedBox r e s = prov ide r . r e s e r v e (templ , 1 , os) ;

// Create & s t a r t the machine
BoxInstance i n s t = prov ide r . i n s t a n t i a t e (r e s) ;

S t r ing i n s t I d = i n s t . ge t Id () ;
S t r ing ip = i n s t . ge tPub l i c Ip () ;
System . out . p r i n t f (‘ In s tance %s has IP %s \n ’ , in s t Id , ip) ;

p rov ide r . d i s card (i n s t) ; // throw the machine away

As in our previous examples, the process is the same, however since we are ex-
pressing things generically it would be trivial to swap out our EC2BoxProvider
for a FlexiscaleBoxProvider and, without any other code changes, allocate ma-
chines using Flexiscale. Given this view, we can consider a more interesting
scenario – we want a 5-machine cluster, each with 1GB of RAM and 160GB
of disk; we will be uploading a 1GB file for some light processing by our mini-
cluster into a 10GB output file which will then be retrieved within 2 days. The
calculation will be very integer-heavy so we’ll use a Java integer performance
benchmark as a fitness function.

462 T. Harmer et al.

BoxProvider p rov ide r = new BoxProviderUnion(getEC2 () ,
ge tFxsca l e () ,
. . .) ;

// 1GB of RAM, 160GB d i s k
Re s t r i c t i o n r1 = new MemoryRestr ict ion (1024) ;
R e s t r i c t i o n r2 = new Loca lD i skRe s t r i c t i on (160) ;

BoxTemplate [] templates = prov ide r . f i nd (r1 , r2) ;

// Find cheapes t f o r 48 hours wi th 1GB up , 10GB down
int hoursOn = 48 ;
int mbUpload = 1024 , mbDownload = 10240;
BoxFitness benchmark = CostWeighting .JAVA INTEGER;

BoxTemplate best = BoxTemplateHelper . getBestFor (
benchmark , hoursOn ,
mbUpload , mbDownload) ;

// Deploy 5 o f the boxes wi th an Ubuntu OS
BoxConfiguration os = BasicBoxConfig . getUbuntu (best) ;
ReservedBox r e s = prov ide r . r e s e r v e (best , 5 , os) ;

BoxInstance [] i n s t s = prov ide r . i n s t a n t i a t e (r e s) ;

for (BoxInstance i n s t an c e : i n s t s) {
St r ing id = in s t an c e . ge t Id () ;
S t r ing prov ide r = in s t an c e . ge tProv ide r . getName () ;
S t r ing ip = in s t an c e . ge tPub l i c Ip () ;

System . out . p r i n t f (‘ In s tance %s on %s has IP %s \n ’ ,
id , prov ider , ip) ;

// I f they ’ re EC2 , p r i n t out the datacent r e too
i f (i n s t an c e instanceof EC2BoxInstance) {

St r ing zone = ((EC2BoxInstance) in s t an c e) . getZone () ;
System . out . p r i n t f (‘ In datacen t r e %s \n ’ , zone) ;

}
}

In the above example we set up a meta-provider, Union Provider, which knows
about EC2, Flexiscale and NewServers—in effect we are setting those providers
we have established accounts with. We call find with restrictions, the results from
all three providers are combined – making the selection of the cheapest provider
completely transparent to our code. The cheapest template is selected using, as
our fitness function, an estimate of the cost of 48 hours of use with 1GB uploaded
and 10GB downloaded. Once complete, a generic helper, BasicBoxConfig, is used
to find an Ubuntu operating system in the providers list of operating system
images. We then reserve and instantiate 5 boxes as in the previous example.

Our generic selection process means that as soon as the abstraction layer
knows about new options (whether through the vendor API or in its own code),
the user can take advantage of this with no changes to their code. In addition, if
the users Flexiscale account is out of credit they can easily (and transparently)
failover to their EC2 account. The fitness function uses a table of performance
values (cached in the provider implementations) we have computed for each
template for various instance types from providers; this allows us to simply

Provider-Independent Use of the Cloud 463

specify the performance we want rather than worry about the differences between
various provider virtualisation platforms.

3 Use Case – A Media Service Cloud

The cloud provider library described here has been used in support of the PRISM
media service cloud[9] to assist in managing a dynamic infrastructure of services
for on-demand media provision of transcoding, storage and federated metadata
indexing (Fig. 5). The PRISM infrastructure supports access to BBC content
from a set-top box, web browser and from a range of media devices, such a
mobile phones and games consoles. The infrastructure is currently being used
for a large-scale user trial that provides access to all of the BBC’s content.

The PRISM system uses resources within the Belfast e-Science Centre, British
Telecom and BBC datacentres to provide core infrastructure. When user demand
for content is high, PRISM services are hosted on utility resources from 3rd party
resource providers. The infrastructure is managed in a uniform way as a collec-
tion of cloud providers—partner clouds that are the core infrastructure (BeSC,
BBC and BT) and utility providers that can be called upon for extra resources.
The PRISM application is written in a way similar to the examples outlined
above—initially the baseline services are allocated from a cloud provider. When
the services within PRISM detect that the system is overloaded, additional re-
sources are deployed from a suitable provider. The cost model used in selection
ensures that, initially, core infrastructure is selected; as this is used and no re-
sources are available in the core clouds, 3rd party clouds are used to provide
supporting services. This model has proven to be highly flexible—it has meant
that the loss of a core infrastructure cloud was automatically compensated for
with increased utility provider use.

Fig. 5. PRISM Media Services Cloud

464 T. Harmer et al.

3.1 Evaluation of Use within PRISM

This abstraction layer, in combination with the supporting dynamic service de-
ployment framework, has saved a large amount of time and development effort in
PRISM, as well as dynamic infrastructure costs. The restrictions supplied put a
heavy weight on the amount and cost of bandwidth to existing machines, allow-
ing the most cost-effective locations to be chosen (internal infrastructure, where
available). This has been demonstrated twice with the PRISM infrastructure:

1. Building contractors cut through our dedicated fibre optic link to the BBC
Northern Ireland datacentre; the system dynamically failed over to free in-
frastructure in the BeSC datacentre

2. The SAN attached to the PRISM transcoding cloud failed; the framework
failed over to EC2 for the 2 days it required to correct the problem, costing
$51.32 per day (67% of the cost was the transcoder VMs), however this came
with a performance drop due to content being served over a 250mbit line

4 Conclusion and Future Work

As the cloud computing landscape gains acceptance in research and established
businesses, users will be looking for cloud platform independence. This is crucial
if cloud computing is to fulfil its promise of providing a robust infrastructure.
Amazon is currently the major player, although its competitors are offering
compelling feature sets for researchers and enterprises looking to deploy existing
applications with minimal changes.

Our main aim was to simplify the allocation, management and discarding
of on-demand resources from a multitude of providers. The initial generic API
provides this functionality cleanly and efficiently and has back-ends for the APIs
of Amazon EC2, Flexiscale, NewServers and the BeSC Service Hosting Cloud. It
has been used directly for applications that want fine-grained control over their
allocated VMs and by our service deployment framework that is available to
UK NGS users. It has enabled our developers to be more experimental with the
design of our own Service Hosting Cloud, as we must only maintain the binding
to our abstraction layer to ensure our internal services can continue to use the
service uninterrupted.

As Amazon and other vendors improve their feature sets we are seeing yet
more common areas – in particular, customisable SAN mount, static IP address
management, and resource resilience and scaling. The groundwork for the inclu-
sion of these features has been laid, however they were not the main focus of its
creation so they will be incorporated at a later date.

References

1. Wang, L., Jinjun Chen, W.J.: Grid Computing: Infrastructure, Service, and Ap-
plications. CRC Press, Boca Raton (2009)

2. Teragrid (2008), http://www.teragrid.org

http://www.teragrid.org

Provider-Independent Use of the Cloud 465

3. Wladawsky-Berger, I.: Cloud computing, grids and the upcoming cambrian explo-
sion in IT (2008)

4. Amazon, Inc.: Amazon Elastic Compute Cloud (2008),
http://aws.amazon.com/ec2/

5. Xcalibre, Inc. (2008), http://www.flexiscale.com
6. AppNexus, Inc. (2008), http://www.appnexus.com
7. NewServers, Inc. (2008), http://www.newservers.com
8. ElasticHosts, Ltd. (2008), http://www.elastichosts.com
9. Perrott, R., Harmer, T., Lewis, R.: e-Science infrastructure for digital media broad-

casting. Computer 41, 67–72 (2008)
10. Harmer, T.: Gridcast–a next generation broadcast infrastructure? Cluster Com-

puting 10, 277–285 (2007)
11. CRISP: Commercial R3 IEC Service Provision (2008), http://crisp-project.org
12. Eucalyptus Systems: The Eucalyptus Open-source Cloud-computing System

(2008), http://open.eucalyptus.com/
13. SLA@SOI Project (2008), http://sla-at-soi.eu

http://aws.amazon.com/ec2/
http://www.flexiscale.com
http://www.appnexus.com
http://www.newservers.com
http://www.elastichosts.com
http://crisp-project.org
http://open.eucalyptus.com/
http://sla-at-soi.eu

	Provider-Independent Use of the Cloud
	Introduction
	Why Are Resource Providers Interesting to Us?
	What Is Involved in Using an On-Demand Cloud Provider?
	Lessons from Existing Cloud Provider APIs

	Our Abstraction Layer
	Use Case – A Media Service Cloud
	Evaluation of Use within PRISM

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

