Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Euro-Par 2009 Parallel Processing
  3. Conference paper

SiMPSON: Efficient Similarity Search in Metric Spaces over P2P Structured Overlay Networks

  • Conference paper
  • pp 498–510
  • Cite this conference paper
Euro-Par 2009 Parallel Processing (Euro-Par 2009)
SiMPSON: Efficient Similarity Search in Metric Spaces over P2P Structured Overlay Networks
  • Quang Hieu Vu17,18,
  • Mihai Lupu19 &
  • Sai Wu20 

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5704))

Included in the following conference series:

  • European Conference on Parallel Processing

Abstract

Similarity search in metric spaces over centralized systems has been significantly studied in the database research community. However, not so much work has been done in the context of P2P networks. This paper introduces SiMPSON: a P2P system supporting similarity search in metric spaces. The aim is to answer queries faster and using less resources than existing systems. For this, each peer first clusters its own data using any off-the-shelf clustering algorithms. Then, the resulting clusters are mapped to one-dimensional values. Finally, these one-dimensional values are indexed into a structured P2P overlay. Our method slightly increases the indexing overhead, but allows us to greatly reduce the number of peers and messages involved in query processing: we trade a small amount of overhead in the data publishing process for a substantial reduction of costs in the querying phase. Based on this architecture, we propose algorithms for processing range and kNN queries. Extensive experimental results validate the claims of efficiency and effectiveness of SiMPSON.

Download to read the full chapter text

Chapter PDF

Similar content being viewed by others

LSH-based distributed similarity indexing with load balancing in high-dimensional space

Article 30 October 2019

NearBucket-LSH: Efficient Similarity Search in P2P Networks

Chapter © 2016

Towards Load Balance and Maintenance in a Structured P2P Network for Locality Sensitive Hashing

Chapter © 2016

References

  1. Banaei-Kashani, F., Shahabi, C.: Swam: a family of access methods for similarity-search in peer-to-peer data networks. In: ACM CIKM, pp. 304–313 (2004)

    Google Scholar 

  2. Bawa, M., Condie, T., Ganesan, P.: LSH forest: self-tuning indexes for similarity search. In: WWW, pp. 651–660 (2005)

    Google Scholar 

  3. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: An efficient and robust access method for points and rectangles. In: ACM SIGMOD, pp. 322–331 (1990)

    Google Scholar 

  4. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Communications of the ACM 18(9), 509–517 (1975)

    Article  MATH  Google Scholar 

  5. Blackard, J.A.: Covertype Data Set, Colorado State University (1998), http://archive.ics.uci.edu/ml/datasets/Covertype

  6. Chavez, E., Navarror, G., Baeza-Yates, R., Marroquin, J.L.: Searching in metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)

    Article  Google Scholar 

  7. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.: Planetlab: An overlay testbed for broad-coverage services. ACM SIGCOMM Computer Communication Review 33(3) (2003)

    Google Scholar 

  8. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: VLDB, pp. 426–435 (1997)

    Google Scholar 

  9. Doulkeridis, C., Vlachou, A., Kotidis, Y., Vazirgiannis, M.: Peer-to-peer similarity search in metric spaces. In: VLDB (2007)

    Google Scholar 

  10. Falchi, F., Gennaro, C., Zezula, P.: A content-addressable network for similarity search in metric spaces. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H., Ouksel, A.M. (eds.) DBISP2P 2005 and DBISP2P 2006. LNCS, vol. 4125, pp. 98–110. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: ACM SIGMOD, pp. 47–57 (1984)

    Google Scholar 

  12. Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces. ACM Transactions on Database Systems (TODS) 28(4), 517–580 (2003)

    Article  Google Scholar 

  13. Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C., Zhang, R.: iDistance: An adaptive B + -tree based indexing method for nearest neighbor search. ACM Transactions on Database Systems (TODS) 30(2), 364–397 (2005)

    Article  Google Scholar 

  14. Jagadish, H.V., Ooi, B.C., Vu, Q.H.: BATON: A balanced tree structure for Peer-to-Peer networks. In: VLDB (2005)

    Google Scholar 

  15. Jagadish, H.V., Ooi, B.C., Vu, Q.H., Zhang, R., Zhou, A.: VBI-tree: a peer-to-peer framework for supporting multi-dimensional indexing schemes. In: ICDE (2006)

    Google Scholar 

  16. Karger, D., Kaashoek, F., Stoica, I., Morris, R., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: ACM SIGCOMM, pp. 149–160 (2001)

    Google Scholar 

  17. Li, M., Lee, W.-C., Sivasubramaniam, A.: DPTree: A balanced tree based indexing framework for peer-to-peer systems. In: ICNP (2006)

    Google Scholar 

  18. Novak, D., Zezula, P.: M-chord: a scalable distributed similarity search structure. In: InfoScale (2006)

    Google Scholar 

  19. Ooi, B.C., Tan, K.-L., Yu, C., Bressan, S.: Indexing the edges: a simple and yet efficient approach to high-dimensional indexing. In: ACM PODS (2000)

    Google Scholar 

  20. Ortega-Binderberger, M.: Image features extracted from a Corel image collection (1999), http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.data.html

  21. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable network. In: ACM SIGCOMM, pp. 161–172 (2001)

    Google Scholar 

  22. Sellis, T., Roussopoulos, N., Faloutsos, C.: The R + -tree: A dynamic index for multi-dimensional objects. In: VLDB, pp. 507–518 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Imperial College London, UK

    Quang Hieu Vu

  2. Institute for Infocomm Research, Singapore

    Quang Hieu Vu

  3. Information Retrieval Facility, Austria

    Mihai Lupu

  4. National University of Singapore, Singapore

    Sai Wu

Authors
  1. Quang Hieu Vu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Mihai Lupu
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Sai Wu
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Department of Software Technology, Delft University of Technology, Mekelweg 4, 2628, Delft, CD, The Netherlands

    Henk Sips , Dick Epema  & Hai-Xiang Lin ,  & 

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vu, Q.H., Lupu, M., Wu, S. (2009). SiMPSON: Efficient Similarity Search in Metric Spaces over P2P Structured Overlay Networks. In: Sips, H., Epema, D., Lin, HX. (eds) Euro-Par 2009 Parallel Processing. Euro-Par 2009. Lecture Notes in Computer Science, vol 5704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03869-3_48

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-03869-3_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03868-6

  • Online ISBN: 978-3-642-03869-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

18.218.209.109

Not affiliated

Springer Nature

© 2025 Springer Nature