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Abstract. Selecting a random peer with uniform probability across a
peer-to-peer (P2P) network is a fundamental function for unstructured
search, data replication, and monitoring algorithms. Such uniform sam-
pling is supported by several techniques. However, current techniques suf-
fer from sample bias and limited applicability. In this paper, we present
a sampling algorithm that achieves a desired uniformity while making
essentially no assumptions about the underlying P2P network. This al-
gorithm, called doubly stochastic converge (DSC), iteratively adjusts the
probabilities of crossing each link in the network during a random walk,
such that the resulting transition matrix is doubly stochastic. DSC is
fully decentralized and is designed to work on both directed and undi-
rected topologies, making it suitable for virtually any P2P network. Our
simulations show that DSC converges quickly on a wide variety of topolo-
gies, and that the random walks needed for sampling are short for most
topologies. In simulation studies with FreePastry, we show that DSC is
resilient to high levels of churn, while incurring a minimal sample bias.

1 Introduction

Our overarching goal is to create a generic “plug-and-play” framework for sam-
pling properties (bandwidth, load, etc.) of interconnected peers in an arbitrary
P2P network. Ideally, the resulting measurements should give an unbiased view
of the current distribution of the properties over the network, which is useful for
immediate parameter tuning as well as for a correct understanding of network
dynamics over multiple sample runs.

In this paper we focus on a fundamental component of such a framework.
Specifically, we implement a uniform sampling function that returns a peer cho-
sen uniformly at random among all peers in a network. This function is applicable
to networks of any topology, and requires no global knowledge. In addition to
serving as a basis for monitoring, uniform random sampling is a useful build-
ing block in distributed systems in general, where it is used to support search,
maintenance, replication, and load-balancing [1,2].

Existing techniques for uniform sampling are based on biased random walks
or gossiping. In the first case, a node is selected at the end of a sufficiently long
random walk in which the probabilities of following each link are adjusted to
obtain a uniform visitation distribution across the network. Existing algorithms,
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such as Metropolis-Hastings and maximum-degree, use local properties of nodes
to compute their visitation probabilities, which they then use to bias the transi-
tion probabilities [2,3,4]. The locality of this information makes these algorithms
practical and efficient. However, these algorithms also assume that all links are
bidirectional, and therefore may not be universally applicable. In gossip-based
sampling, nodes maintain a pool of addresses of other peers that is frequently
exchanged and shuffled with other peers through a gossip protocol [5]. Gossip
sampling is tunable and efficient in terms of traffic, and is effective for appli-
cations such as search, load-balancing, and topology construction. However, it
is less appropriate for statistical sampling, especially with a bursty or high de-
mand, because of the overhead of an increased gossip rate, which is necessary to
provide independent and identically distributed samples (see Section 3).

Our contribution is to remove the assumption of bidirectional links in the net-
work while maintaining desirable statistical properties (i.e., uniformity) for the
sampling service. Non-bidirectional networks come in two types: networks with
truly asymmetric links, and networks lacking a consistency protocol for tracking
incoming links (e.g., DHTs). The algorithm we propose is fully distributed and
uses only localized information. These features make it applicable to virtually
any P2P system, as well as to a wide range of applications.

Our algorithm falls in the general category of random-walk sampling. The
main idea is to avoid the calculation of each node’s visitation probability, and
instead to adjust the transition probabilities iteratively, converging to a state in
which the sum of transition probabilities into each node equals 1. The resulting
transition matrix is said to be doubly stochastic, and induces uniform visitation
probabilities. In practice, the algorithm performs well on both static and dynamic
topologies, keeping the ratio between the maximum and minimum sample prob-
ability below 1.2 for realistic churn conditions. Further, our algorithm generates
link-biases that keep the expected sample walk length reasonably short, between
20 and 50 hops for 1000-node static (no churn) topologies of various kinds, and
around 23 hops for 1000-node Pastry networks under churn.

In Section 2 we cover the relevant background necessary to explain our al-
gorithm. Section 3 reviews previous work on P2P sampling. Section 4 presents
a basic version of our doubly stochastic converge (DSC) algorithm, sketches a
proof of its convergence, and presents a more advanced variant that reduces
the length of the random walks and deals with failure. Section 5 evaluates DSC
in simulations on static topologies, and within a concrete system under churn.
Finally, Section 6 concludes with a discussion of future work.

2 Background Theory

We model a P2P network as a directed graph G = (V, E) on n = |V | vertices.
For each vertex v, N−(v) = {u ∈ V \ {v} : (u, v) ∈ E} is the in-neighborhood
of v, and N+(v) = {u ∈ V \ {v} : (v, u) ∈ E} is the out-neighborhood of v.
Notice that N− and N+ do not contain v itself. For each pair of vertices u and
v, puv is the transition probability from u to v. That is, puv is the probability of
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proceeding from u to v in a random walk. Transition probabilities are such that
puv = 0 when (u, v) /∈ E, and

∑
v∈V puv = 1 for every vertex u, and therefore

form a stochastic n× n matrix P.
We model a random walk across the P2P network as a Markov chain with

transition matrix P. The vector x denotes the probabilities of being at each
vertex in the graph, and therefore in each state of the Markov chain. Given this
distribution of probabilities xt at time t, one step in the random walk produces
the distribution xt+1 = xtP. If the Markov chain is ergodic, then the probability
to arrive at a given node after a sufficiently long walk stabilizes, independently
of the starting point, to a unique stationary distribution π, where each node u
has a visitation probability of π(u). The mixing-time of P is the minimal length
of a walk that achieves a desired deviation from the stationary distribution.

A Markov chain is ergodic if every state (i.e., every peer) is reachable from any
other state, and, beyond a certain path length, is reachable at all greater path
lengths. Formally, there exists a number of steps q for which ∀n ≥ q : Pn(u, v) >
0 for all nodes u and v. In practice, a P2P network that is both strongly connected
and aperiodic—reasonable assumptions—will have an ergodic Markov chain.

Since we want to sample peers uniformly starting from any node, our goal is to
obtain a uniform stationary distribution. The theory of Markov chains provides a
sufficient condition that leads to such a stationary distribution. Specifically, every
ergodic Markov chain with a doubly-stochastic transition matrix has a uniform
stationary distribution. A matrix is doubly-stochastic when every row and every
column sums to 1. In other words, if the sum of the transition probabilities of
all the incoming edges of every node is 1 (the sum of the transition probabilities
of all the outgoing edges is 1 by definition) then the transition matrix is doubly-
stochastic, and the stationary distribution is uniform.

3 Related Work

For the purpose of this paper, it is useful to distinguish two broad categories
of techniques for uniform peer sampling over P2P systems. First we discuss
techniques developed for specific P2P systems or topologies. Then we review
more general techniques, which we further classify in two main subcategories:
those based on random walks, and those based on gossip protocols.

King and Saia present a method to select a peer uniformly at random from any
DHT that supports the common ID-based lookup function, where get(x) returns
the closest peer to ID x [6]. Similarly, studies of churn dynamics in DHTs often
assume that peers can be sampled by looking up randomly selected values in
the address space [7]. However, many DHTs show a preference toward storing
long-lived nodes in routing tables in order to increase reliability, which biases the
selection toward such nodes. Further, natural differences in the distribution of
IDs biases toward peers that are responsible for larger portions of the ID-space. In
general, any technique which samples peers in a manner correlated with session
length will lead to biased results [2,8]. Beyond their statistical properties, these
techniques are also limited in that they are only applicable to DHTs.
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Moving away from system-specific techniques, one general way to sample peers
at random is to use random walks, where a peer is sampled at the end of a
sufficiently long random walk. However, since the probability of reaching each
peer depends on the topology, and is generally not uniform, the walk must be
biased in such a way as to obtain a uniform visitation probability. This is typ-
ically done in two steps: first, each node u computes for each neighbor v the
ratio between its unbiased visitation probability and that of v. This is easily
accomplished assuming that all links are bidirectional, as the ratio π(u)/π(v)
equals the ratio between the degrees of u and v, and can therefore be com-
puted locally [2]. In the second step, an algorithm such as Metropolis-Hastings
or maximum-degree [2,3,4,9] is used to bias the transition probability of each
link in order to obtain a uniform stationary distribution π.

In practice, existing random-walk techniques are effective. However, as they
assume that all links are bidirectional, they may not be universally applicable.
Furthermore, the use of bidirectional connections may incur additional costs,
such as NAT traversal, or additional state tracking for incoming links.

Other general-purpose sampling techniques are based on gossip protocols [5],
which have also been shown to be useful in topology construction and mainte-
nance [10], and in the estimation of global properties [11]. Gossip-based sampling
amounts to picking an address from a local pool of peer addresses that is filled
and continually shuffled through periodic “gossip” exchanges with other peers.
The main advantage of gossip techniques is that extracting one sample is an im-
mediate and local operation. Also, gossip protocols can be tuned to function at a
low overhead, as only a few gossip messages per peer can guarantee a good level
of randomness in the peer pools. However, these advantages deteriorate in the
presence of frequent sample requests, as multiple requests can no longer return
independent and identically distributed samples. There are two ways to improve
the statistical quality of multiple samples in such scenarios: (1) increase the size
of the peer pools, and (2) increase the gossip frequency. Unfortunately both
actions also increase the overhead of the gossip protocol, and do so uniformly
across the entire network. We also note that the cost of gossip messages must
be added to the communication costs of the P2P system being sampled, even in
the absence of churn, as gossip messages are exchanged with peers selected from
the gossip peer pool, and not among the neighbors in the sampled P2P network.

4 The DSC Algorithm

One can uniformly sample a network by first assigning transition probabilities
to edges such that the stationary distribution is uniform, and then performing
random walks of sufficient lengths, bounded by the mixing-time. In this section
we discuss an algorithm that solves the first of these requirements.

4.1 Basic DSC

As stated in Section 2, P is stochastic by definition, as the outgoing edges of every
node have a total probability of 1. Our task is to assign outgoing probabilities
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(a) (b)

Fig. 1. An ergodic graph (a) Labeled with initial transition probabilities. (b) Balanced
using a self-loop.

so that, for each node, the probabilities of the incoming edges also add up to 1,
thereby making P doubly stochastic. We refer to this process as balancing.

In a fully decentralized balancing algorithm, a node v can not directly control
the probabilities assigned to its incoming edges, which are controlled by v’s
predecessors. In fact, v may only know about a subset (possibly none) of its
predecessors. Even if v could control the probability of some of its incoming
edges, changing one of these probabilities would affect the balance of probabilities
for other nodes. To gain some degrees of freedom for the purpose of balancing,
we introduce an extra edge, the self-loop, linking each node back to itself. The
self-loop is both an incoming and outgoing edge, and therefore can be used by
a node to make up deficits in its own incoming probability.

Figure 1 exemplifies the difficulties of balancing, and the use of the self-loop.
Neither node B or C can be balanced without removing edge (A, C). B has
a deficit of incoming probability, yet A cannot rebalance its out-probability to
satisfy B without removing all probability from (A, C). Conversely, C has too
much incoming probability, and B can not redirect the excess probability else-
where. Setting pAC = 0 balances all in- and out-probabilities, but renders the
graph periodic, and hence no longer ergodic. The solution, shown in Figure 1(b),
is to use the self-loop (B, B) to increase the in-probability of B to 1, which re-
duces the in-probability of C to 1, balances P, and keeps G ergodic. This leads
directly to the core intuition of DSC: increasing the self-loop for nodes with in-
probability deficits, and therefore reducing the probability across their outgoing
edges, decreases the excess in-probability of other nodes.

More formally, we define the sum of in- and out-probability at a node v as
In(v) � pvv +

∑
u∈N−(v) puv and Out(v) � pvv +

∑
u∈N+(v) pvu, where pvv is

the self loop. Both In(v) and Out(v) must sum to 1 in order for P to be doubly
stochastic. Clearly, increasing or decreasing the self-loop forces a decrease or
increase, respectively, of the sum of probability across both N−(v) and N+(v).
At any given time, a node is in one of three states: it has an in-probability
surplus, so it is in V + � {v ∈ V : In(v) > 1}; it has an in-probability deficit, so
it is in V − � {v ∈ V : In(v) < 1}; or it is balanced, in V = � {v ∈ V : In(v) = 1}.

The mean node in-probability is 1, as the sum of all in-probabilities equals the
sum of all out-probabilities, which equals n since Out(v) = 1 for all v. Therefore,
the total surplus of in-probability in V + equals the total deficit of in-probability
in V −. It follows that if we move nodes from V − to V =, nodes in V + will
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eventually be forced into V =. Once all nodes are in V =, P becomes doubly
stochastic. Fortunately, moving a node v from V − to V = is simple: increase the
self-loop pvv by 1− In(v), bringing In(v) to 1. This is the basic strategy of DSC.
In particular, every node executes two steps:

1. Every t seconds, v updates its self-loop pvv. When In(v) < 1, the self-loop is
increased by 1− In(v). If In(v) ≥ 1, no action is taken.

2. Every t/f seconds, v sends updates to all u ∈ N+(v), notifying them of their
current transition probability, (1− pvv)/|N+(v)|. Successor nodes store this
value, using it to calculate In(v) in step 1.

When step 1 is executed we say there has been an update. The time t should be
selected with bandwidth, network latency, and churn in mind (see Section 5). A
short t leads to quicker convergence, but also increasing the chance to miss updates
if latency is high. The frequency of updates f can be set to 1 if on-time delivery
is assured, or higher in the presence of packet losses or high latency. Step 2 of the
basic versionof DSC evenly balances and transmits the outgoing probabilities. The
uniformity of transition probabilities across outgoing links is non-optimal for most
topologies. In Section 4.3 we discuss a variant of this assignment strategy which
can assign outgoing probabilities in a more effective way.

In a technical report [12], we prove that, as long as G is ergodic, basic DSC
iteratively updates P so that, in the limit, P converges to a doubly stochastic
matrix. The main intuition behind the proof is that the ergodicity of the graph
assures that any reduction of out-probability at a node v in V − (caused by the
node increasing its self-loop) will eventually reach a set of nodes in V +, the
members of which will each absorb some fraction of the change, leading to a
global reduction of in-probability deficit. A key point of our proof is that neither
the propagation time (number of updates), nor the amount of in-probability
absorbed by u, depend on time. As a result, the global in-probability deficit
converges exponentially to zero, leading to a doubly-stochastic transition matrix.

Within our proof, we also establish a lower bound for the reduction factor of
the overall deficit. However, this bound is very loose. Therefore, we do not use
it to evaluate DSC, and instead rely on simulation (see Section 5). In practice,
DSC is quite fast in converging toward a doubly-stochastic bias, although various
factors can influence its rate of convergence. One such factor is the ordering of
node updates. For example, in Figure 1, updating A and C first is clearly not
optimal. We have observed that different update ordering may change the rate
of convergence by a factor of 2 for large topologies.

4.2 Failure and Relaxation

Churn events (i.e., nodes joining or leaving the network) have the effect of in-
creasing self-loops. A node joining the network may move its successors from
V = or V − into V +. Such successors may find themselves in the peculiar state of
having a surplus of in-probability and a self-loop greater than 0. This is never
the case in the absence of churn. Nodes leaving the network have a similar effect.
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Predecessors of a leaving node u will increase their probabilities across remaining
out-edges, while successors will have to increase their self-loop to make up for
lost in-probability. Just as when a node joins, a leaving node u can force some
v ∈ N+(q) : q ∈ N−(u) back into V + with a non-zero self-loop.

Taken together, these two phenomena lead to ever increasing self-loops, which
is problematic as high self-loops tend to increase the mixing time. If we intend
to keep a reasonable mixing time in a network with churn, we cannot rely on an
algorithm that only increases self-loops. We therefore allow DSC to also lower
self-loops. In particular, a node v ∈ V + with a self loop pvv > 0 decreases its self
loop by min(pvv, 1− In(v)), setting it to zero, or as close to zero as possible. In
the same operation, v must also raise the transition probabilities to its successors
accordingly. In turn, this can cause q ∈ N+(u) to also lower their self-loop, and
so on. However, the effect is dampened each successive step away from v, and is
unlikely to propagate to the entire network, as small increases in probability are
absorbed by nodes in V − or V = with non-zero self-loops.

Relaxation is essential to the functioning of DSC in a network with churn.
Without it, self-loops will approach 1, leading to higher and higher sample walk
lengths. Importantly, relaxation does not require a channel of communication in
the opposite direction of the network links, allowing it to work with basic DSC.

4.3 Feedback

Basic DSC does not assume bidirectional connectivity, and therefore does not
use information about the state of a node’s successors. In particular, basic DSC
spreads the outgoing probabilities uniformly across successors, without consider-
ing their individual state. This can slow convergence and, more seriously, increase
the mixing-time due to high self-loops probabilities. Whenever bidirectional links
exist, feedback from successors can be used to weight outgoing probabilities.
Specifically, in addition to storing the transition probability sent by a predeces-
sor v, a node u may reply with an acknowledgment containing In(u). v then uses
this value to first bias pvu, and then to renormalize all its other out-probabilities:

1. pvu ← pvu/In(u) (bias)
2. ∀q ∈ N+(v) : (pvq ← (pvq/

∑
q∈N+(v) pvq)(1 − pvv)) (normalize)

The weighting is only applied once every t seconds, no matter how high f may
be, so that lossy links are not inappropriately biased against.

5 Simulation Analysis

Our analysis of DSC considers two main questions: (1) How does DSC per-
form across a wide range of topologies, both in terms of convergence speed, and
expected walk length? (2) Is DSC resilient under churn conditions? To charac-
terize convergence and walk lengths, we use a discrete-event simulation of DSC.
To analyze the effects of churn, we run a concrete implementation of DSC inte-
grated within the FreePastry framework1 under various levels of churn. A more
extensive analysis of these experiments is available in a technical report [12].
1 http://freepastry.rice.edu; an open-source implementation of Pastry [13].
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Fig. 2. Uniformity ratio r (thick) and statistical distance d (thin) after i/n updates

We simulate DSC over a diverse set of generated graphs. In particular, we use
three types of generative models commonly used in P2P research:

– Kleinberg: nodes are connected in a grid, along with q long distance links
chosen with probability inversely proportional to the squared distance [14].

– Erdős-Rényi: edges are selected independently with a fixed probability [15].
– Barabási-Albert: nodes are connected to high-degree nodes with preferential-

attachment factor 0.5, creating a power-law degree distribution [15].

We use variants of these standard models to obtain directed graphs. All graphs
have the same number of vertices n = 1000 and, with minor differences, the same
number |E| ≈ n log n of edges, which corresponds to a node–edge ratio found in
many deployed systems. We run two versions of DSC: basic and full, where the
latter includes feedback and relaxation. To measure the quality of the resulting
sampling service, we compute two values, the ratio r = max(π)/ min(π), which
highlights the worst-case difference in sample probability, and therefore gives a
very conservative characterization of the uniformity achieved by DSC, and the
statistical distance d( 1

n , π) = 1
2

∑
s∈S | 1n − π(s)|, which measures the normalized

absolute difference between π and the uniform distribution.
Figure 2 shows the ratio r and statistical distance d as a function of the number

of updates per peer, i/n, where i is the total number of updates over the network.
Notice that updates execute in parallel, so i/n represents the number of rounds
of update of the network as a whole. We simulate DSC on 50 topologies of each
type, and plot the median value of r and d, with error bars for r showing the
10th and 90th percentile. In all situations DSC converges exponentially fast to
the optimal ratio of r = 1. For Erdős-Rényi and Kleinberg topologies, full DSC
performs better, reaching a tight ratio r ≤ 1.01 in just 30 rounds. Reasonable
values of d are achieved in less than 10 rounds for full DSC, and 50 rounds
without feedback. Barabási-Albert topologies exhibit different behavior: basic
DSC converges quickly, reaching r = 1.01 in 160 rounds, but full DSC experiences
severe oscillations in r, and converges much more slowly. Further analysis reveals
that this is due to in-probability oscillating between V + and V − at low in-degree
nodes, behavior which is caused by feedback. This problem could be eliminated
by making feedback sensitive to successor in-degree.
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Quick convergence indicates that the cost of balancing is low, but does not
say anything about the costs of sampling. This latter cost is determined by the
mixing-time, that is, the number of hops after which a random walk becomes
independent of its starting node. We analyze this cost using basic results from
Markov-chain theory [12]. After the convergence of each topology, we calculate
the maximum expected walk-length max(E[h]) for different target values of r.

Figure 3(a) shows the results of this analysis, graphing the median value,
with error bars representing the 10th and 90th percentiles. Reasonable values of
r are achievable in less than 25 hops for Erdős-Rényi and 45 hops for Kleinberg
with full DSC. However, feedback in full DSC can not significantly improve
walk-lengths for Kleinberg topologies. This is because feedback takes advantage
of irregularity in link structure, and Kleinberg topologies are highly regular.
Barabási-Albert topologies are not shown, as max(E[h]) can be as high as 107

for r = 1.05. All of our Barabási-Albert topologies have several extremely weakly
connected nodes with very low initial visitation probability (typically less than
10−6) which develop extremely high self-loops (often greater than 0.995).

In evaluating walk lengths in DSC, we would like to compare them with the
best achievable walk lengths for each topology. Unfortunately, we are not aware
of a suitable optimization algorithm for topologies of the type and scale we con-
sidered. In order to obtain an estimate of the minimal walk length, we try to
balance the transition probabilities using a linear-programming optimization. In
particular, we use an objective function that minimizes self-loops while trying
to evenly balance out-probability [12]. We then compare DSC with the linear-
programming solution using the second-largest eigenvalue modulus λ2 of the
transition matrix P (lower values of λ2 indicate better walk lengths [16]).

The results, shown in Figure 3(b), demonstrate that there is room for improve-
ment in the way DSC assigns probability across edges. The linear-programming
method minimizes λ2 to a greater extent thanks to its global view of the network,
whereas DSC operates in a completely decentralized manner. We are consider-
ing ways to improve DSC’s weightings by integrating more information into
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feedback. The end goal is to move transition probability to those successors with
low in-probability [3].

In the second part of our evaluation, we study the behavior of DSC under
churn by running it within FreePastry, an implementation of the fault toler-
ant, locality-aware Pastry DHT [13]. Our churn model follows the findings of
Stutzbach and Rejaie and their study of a DHT based on Kademlia [8,12]. We
use FreePastry in simulation mode over 100 and 1000 nodes, with the churn
process starting as soon as the last node has joined. After the initial join period
is complete, we measure r for 10 minutes.

The graphs in Figure 4(a) show the ratio r (median, min, max, 10th, and 90th
percentile) for different levels of churn. c = 1 indicates churn dynamics very similar
to those measured by Stutzbach and Rejaie, while c = 2, 4 means twice and four
times those levels [8,12]. Figure 4(b) shows the session lengths (median, first, and
third quartile) for each value of c. We first measure the ratio r without DSC, then
with DSC with updates every 2 and 4 seconds (t = 2 or 4). The results show that
DSC achieves high uniformity of sampling, keeping the ratio r under 2 for more
than 50% of the topologies under all churn levels, and does even better at c = 1.

We study the mixing-times in the Pastry experiments with the same method-
ology used for the static topologies.
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Figure 5 displays the relation between the ratio r and the walk lengths under
varying levels of churn, and shows that DSC achieves good uniformity with short
sampling walks. In fact, 1000-node Pastry networks, with or without churn, have
shorter or comparable walk lengths than any of the static topologies we studied.
Furthermore, the graph comparing the 100 and 1000-node topologies suggests a
sub-linear growth of the length of the walks as a function of the size of the network.

6 Conclusion

We have presented DSC, a distributed algorithm that balances the transition
probabilities of peers in a directed P2P topology such that random walks of suf-
ficient can uniformly sample the network. We gave a proof sketch of convergence
for DSC, and showed, through simulations, that the rate of convergence is us-
able in many concrete scenarios, and remains so under realistic levels of churn.
Further, we found the sample-length of DSC-biased topologies to be acceptable,
and that churn has minimal effects on sample probability.

Active development continues on DSC. First, we are continuing to simulate
DSC on networks of increasing sizes to study its scaling properties. In particu-
lar, we want to determine how scalable relaxation is for different topology types.
Further, we would like to better understand the dynamics of both the stationary
distribution and random walks under churn. Second, DSC has been designed
to function in an opportunistic manner, so as to incur little or no traffic over-
head, by piggy-backing on existing P2P traffic. We are working to integrate such
piggy-backing with FreePastry using an aggregation technique we are develop-
ing. Finally, to make DSC usable in a concrete deployment, we are evaluating
several efficient algorithms to estimate the minimal necessary walk lengths.

We would also like to return to a more theoretical analysis of DSC, first
considering the effects of feedback and relaxation on convergence, and then trying
to tighten the bounds on convergence. We are also very interested in trying to
improve the biasing. Compared to approximate linear programming solutions,
DSC biasing produces longer walks, and a method similar to the one presented by
Awan et. al could be appropriate [3]. Another option to is to explore distributed
approximations of various iterative minimizations of the mixing time [17].
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