
Assigning Blame: Mapping Performance to High

Level Parallel Programming Abstractions

Nick Rutar and Jeffrey K. Hollingsworth

Computer Science Department
University of Maryland

College Park, MD 20742, USA
{rutar,hollings}@cs.umd.edu

Abstract. Parallel programs are increasingly being written using pro-
gramming frameworks and other environments that allow parallel con-
structs to be programmed with greater ease. The data structures used
allow the modeling of complex mathematical structures like linear sys-
tems and partial differential equations using high-level programming ab-
stractions. While this allows programmers to model complex systems in
a more intuitive way, it also makes the debugging and profiling of these
systems more difficult due to the complexity of mapping these high level
abstractions down to the low level parallel programming constructs. This
work discusses mapping mechanisms, called variable blame, for creating
these mappings and using them to assist in the profiling and debugging of
programs created using advanced parallel programming techniques. We
also include an example of a prototype implementation of the system
profiling three programs.

1 Introduction

As parallel systems become larger and more powerful, the problems that can be
solved using these systems become larger and more complex. However, there is
a divide between those software engineers and parallel language designers who
know how to program for and utilize these systems and the people who actually
have the problems that could use such systems. To help bridge this gap, recent
years have seen more and more parallel frameworks and libraries[1,2] arising
to assist the application scientists in creating programs to utilize distributed
systems. These environments have abstractions that hide away many of the lower
level parallel language constructs and APIs that let developers program in terms
of real world mathematical constructs.

All of the above points are positive for the scientific community, but they
also bring about some interesting problems. An important issue introduced is
profiling and debugging of these systems. There are many profiling tools that
target parallel applications specifically. However, when these abstractions are
introduced it becomes more and more difficult to diagnose runtime issues and
debug them using conventional means. The higher level the abstractions, the
harder it is to figure out the lower level constructs that map to them and sub-
sequently discover where performance problems are occurring. This affects the

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 21–32, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

22 N. Rutar and J.K. Hollingsworth

end user as well as the designers of the frameworks who are looking to improve
the performance of their software.

Programs with multileveled abstractions introduce unique ways of approach-
ing how to profile the program. For traditional profiling tools, measured variables
(time, cache misses, floating point operations, etc.) are given in terms of easily
delimited program elements (functions, basic blocks, source lines). Programs de-
veloped utilizing parallel frameworks can also be measured in such ways, but
we believe that these traditional measurements can be improved upon. The in-
teresting thing for many of these parallel frameworks is the representation of
container objects in terms of things that many scientific end users relate to,
e.g. Linear Systems, PDEs, Matrices. We believe that this can be utilized in a
profiling environment by taking the abstractions a step further and representing
performance data in terms of the abstractions, mainly the instantiations of these
abstractions in the form of program variables. The unique feature of our system
is its ability to automatically combine and map complex internal data structures
(such as sparse matrices and non-uniform grids) to higher level concepts.

The core of mapping performance data to the variables rests with the idea of
variable “blame.” Variable blame is defined as a measurement of performance
data associated with the explicit and implicit data flow used to determine the
value of a particular variable at various levels of an abstraction’s hierarchy. The
performance data metric is chosen by the end user based on what profiling infor-
mation they are interested in, which is in turn based on the available measurable
hardware counters for the system. For complex structures or classes that have
multiple member variables ranging from other complex types or primitives, it is
the aggregation of all the blame from its respective components. Blame is calcu-
lated at the lowest level, where data movement is made in the form of individual
assignment and arithmetic operations, and then bubbled up the hierarchy of the
abstraction.

2 Calculating Blame

The calculation of blame for a given variable is a multistep process utilizing
both static and runtime information. When possible, information is gathered
statically once to decrease the runtime footprint. The runtime operations are
based primarily on information gathered through sampling utilizing hardware
counters. The process for calculating blame is discussed in this section and is
displayed in Figure 1.

2.1 Data Flow Relationships

The building blocks for variable blame lie in the data flow relationships between
variables in a program. Put simply, at the end of a code region we want to
examine what variable ultimately contains the product of all the work that went
into producing a certain value. There are two types of data flow relationships
we are interested in, explicit and implicit.

Assigning Blame: Mapping Performance 23

Fig. 1. Blame mapping for main function

Explicit transfers occur on data writes within a program. For example, con-
sider the C snippet below:

int a, b, c;
a = 7;
b = 8;
c = a + b;

The blame for this snippet would be assigned to variable c. This is because the
values of a and b are calculated directly for the purpose of having their sum
stored in c. The variable c may then be used in another computation and will
subsequently be included in the blame set of the variable that uses it (along with
a and b).

Implicit transfer is more complicated and subjective than explicit transfer.
It primarily concerns variables that are assigned a value that is never directly
assigned to another variable. This occurs often in variables that involve control
flow. For example, a loop index is incremented for every iteration of the loop and
used in a comparison operation but is never actually assigned in some computa-
tion (besides incrementing itself). This is also true in flags for switch statements
and standard conditional statements. In these cases, all of the variables implic-
itly affected by these variables (statements within loop body, conditional branch)
will have an implicit relationship with these variables.

Both explicit and implicit relationships are computed statically and informa-
tion is stored per function. We accomplish this by analyzing an intermediate,
three address, representation of the program. We describe memory operations in
Section 2.3. For explicit relationships, we build a graph based on the data flow
between the variables. For implicit relationships, we use the control flow graph
and dominator tree generated to infer implicit relationships for each basic block.
All variables within those basic blocks then have a relationship to the implicit

24 N. Rutar and J.K. Hollingsworth

variables responsible for the control flow that resulted in the blocks present in
that control flow path. For both implicit and explicit relationships, after the cal-
culations are performed on the intermediate format, a mapping is used to relate
data back to the original source code.

2.2 Transfer Functions

The data flow relationships are all recorded at the function level and calculated
through intraprocedural analysis. For interprocedural analysis, we need a mecha-
nism to communicate the blame between functions. We utilize transfer functions
for this step. When looking at explicit and implicit blame, we utilize a form of
escape analysis[3] to determine what variables, which we deem exit variables, are
live outside of the scope of the function. These could be parameters passed into
the function, global variables, or return values. All explicit and implicit blame
for each function is represented in terms of these exit variables during static
(pre-execution) analysis. During runtime, a transfer function is used to resolve
the caller side parameters and return containers to the appropriate callee side
exit variables.

When source code is not available, manual intervention is needed. For these
cases, transfer functions can be created based on knowledge about a procedure’s
functionality. When faced with a complete lack of knowledge about a function
(no source or documentation) a heuristic is used to divide up the blame between
the parameters and return values from these functions.

For common library routines such as MPI, we include predefined blame assign-
ments based on the prototype of the functions. For example, if we see a program
with a call to MPI Bcast without doing any additional analysis we can attribute
the blame for that function to the variable passed in as the first parameter, the
data that is being broadcast.

2.3 Mem-Containers

Up to this point, the discussion has not considered operations involving memory,
whether stack or heap allocated. We represent these operations in our mappings
with “mem-containers.” A mem-container is an abstraction representing a unique
contiguous region of memory for the scope of time the memory is available to be
accessed by the program. In the case of heap objects, this would be the period
of time between allocation and deallocation. For global variables, the period of
time would be the length of the program. For structures, classes, and arrays using
memory allocated on the stack, the supporting mem-container is active while the
function that pushed the data to the stack is still represented on the call stack.
It should be noted that mem-containers are not the final blame containers that
are presented to the user. There needs to be an additional mapping that takes
place to associate the mem-containers with the program variables they represent.
Abstractions within frameworks for items such as matrices and vectors may have
multiple mem-containers associated with them.

Like transfer functions, static analysis is used to reduce runtime data collection
and analysis. For mem-containers, we can determine points in the program where

Assigning Blame: Mapping Performance 25

memory allocation and deallocation takes place. At these places in the code, we
create stubs signifying that an allocation can be expected at these points when
the program is run. At runtime, by instrumenting allocation routines like malloc,
we gather additional information such as the location in memory the allocation
took place and the size of the allocation. Furthermore, we perform a stack walk
at each allocation point to determine the call path that led to the allocation. This
path information is used to match the allocation to the stubs we had generated
through static analysis.

2.4 Container Resolution

Container resolution refers to the resolution of blame within complex data types.
For instance, a structure or class may have multiple fields which acquires blame
through the course of the program. Some of these fields may themselves be
classes. Container resolution is simply the bubbling up of blame until it reaches
the top most container type. Much of this resolution can be taken care of stati-
cally, though there could be cases where a field may be referenced through a set
of pointers where runtime information will be needed to fully attribute blame to
the proper container.

2.5 Instance Generation

An instance is an abstraction that represents the operations that occur at a spe-
cific sampling point. Since each sample generates a unique instance, the instance
will carry with it the blame of the metric that caused the program to generate the
sample. The metric is chosen by the user based on what aspect of the program
they would like to measure, and typically are of the set of hardware counters
available on a given platform. Instances are then mapped up to either mem-
containers or program variables for aggregation of blame. In the case that the
access pertained to a primitive within the code, the instance will map to a spe-
cific program variable and no record of the instance will need to be maintained.
In the case the sample occurred during a memory operation, more exhaustive
bookkeeping about the instance is maintained and an upmapping is created to
its corresponding mem-container. Within each instance are also identifiers that
describe which node in a distributed system and/or thread these accesses came
from.

This sampling can be done not only at specific time intervals, but can also be
based on program events. For example, threshold driver overflow interrupts from
hardware counters can be used. The user is allowed to choose what metric(i.e.
cache misses, floating point operations) they want to sample and how often the
interrupt will be triggered. When the interrupt occurs, our system uses a handler
that records the program counter and state of the machine when the overflow
occurs. We use this interrupt as an opportunity to do a stack walk at the point
of interrupt. This allows us to utilize the transfer functions in a context sensitive
matter.

26 N. Rutar and J.K. Hollingsworth

2.6 Final Variable Blame

The final blame for a given variable is presented to the user at “blame points”
throughout the program. The majority of blame points are automatically identi-
fied through static analysis as places within the program where blame can not be
mapped up any further to another variable, the most obvious of these functions
being the main function. A blame point can also be any point in the program
explicitly designated by the user to be a point of interest or that falls into a set of
criteria that would make it interesting to examine. One such set of criteria could
be having a function with variables that contain more than a certain percentage
of the total blame for the program. It should also be noted that although blame
propagates up the call stack, not all blame will necessarily make it back to the
original main function. An example of this, as well as detailing multiple blame
points, is shown in Section 3.3.

3 Experimental Results

To implement the concepts introduced in Section 2 we used various components.
To generate the intermediate format used to calculate the implicit and explicit
relationships, we used LLVM[4]. To perform the stackwalking that assisted in
creating a context sensitive represenation of the mem-containers and instances,
we used the Stackwalker API[5]. Finally, for generating instances through sam-
pling we used PAPI[6]. We also utilized PAPI for accessing hardware counter
information.

To show some of the capabilities that our mapping offers that differ from tra-
ditional techniques, we have chosen three programs that directly exhibit prop-
erties that would be found in large parallel programming abstractions. For all
three programs, the blame metric concerns cycles spent with the sampling trig-
gered every predetermined number of cycles. Therefore, for each sampling point
(instance), whatever variable gets the blame for that instance is essentially re-
sponsible for the cycles that were used between measured samples. For these
experiments, we present the absolute blame numbers that are matched one to
one with the samples taken while profiling the program. We also present the per-
centage of the program cycles that were used in the calculation of the variable
according to our blame mappings.

It should be noted that although we used cycles for the blame metric for
these tests, once the mappings are in place any measurable metric on the system
can be applied. In the case of parallel programs, we can utilize metrics such as
blocking time and bytes transferred in cases where MPI calls contribute to the
blame.

3.1 FFP SPARSE

One of the test programs we examined was FFP SPARSE[7], a small open source
C++ program that uses sparse matrices and a triangle mesh to solve a form

Assigning Blame: Mapping Performance 27

of Poisson’s equation. It consists of approximately 6, 700 lines of code and 63
functions. Although this program is sequential, the problem space and data
structures utilized make it an attractive case study.

We ran the FFP SPARSE program and recorded 101 samples which are the
basis of the mappings discussed in this section. After removal of the debugging
output, the only blame point for this program is the main function, with the
program culminating in the output of the final solution vector.

This program does not have complex data structures to represent vectors and
matrices, but the variable names for the primitive arrays map nicely to their
mathematical counterparts in many cases. Table 1 shows the blame mappings
for the variables in main. The “Base Data Centric” column represents explicit
memory operations, meaning that the sampling was taken when an assignment
was occurring for these arrays. “Blame” refers to the number of samples in which
blame was assigned to those variables (whether directly to the variable or the
mem-containers that mapped to that variable).

One thing that stands out from this sampling is the lack of sample points
(only two) where an explicit write was taking place to the arrays present at
the top scope of main. This number includes any writes to these memory
locations under all aliases as many of these arrays are passed as parameters
throughout the program. If one were looking to examine which variables were
the most important to the program based solely on this information, which
would be the case for standard profiling systems, it would be hard to get any
usable information. In a dense matrix, there may be many more reads and
writes to actual memory locations tied to the defined variable for the ma-
trix. However, in sparse matrix implementations, many of the computations
take place behind layers of abstraction between the defined variable and where
the work is actually taking place. When blame mapping is introduced we get a
clearer picture of what the program is trying to accomplish. The solution vector
and the coefficient matrix are the clear recipients for most of the blame of the
program.

Table 1. Variables and their blame for run of FFP SPARSE

Base
Name Type Description Data Blame(%)

Centric
node u double * Solution Vector 0 35(34.7)
a double * Coefficient Matrix 0 24.5(24.3)
ia int * Non-zero row indices of a 1 5(5.0)
ja int * Non-zero column indices of a 1 5(5.0)
element neighbor int * Estimate of non-zeroes 0 10(9.9)
node boundary bool * Bool vector for boundary 0 9(8.9)
f double * Right hand side Vector 0 3.5(3.5)
Other - - 0 9(8.9)
Total - - 2 101(100)

28 N. Rutar and J.K. Hollingsworth

Table 2. Variables and their blame for run of the QUAD MPI

Blame (per Node)
Name Type MPI Call N1(%) N2(%) N3(%) N4(%) Total(%)

dim num int MPI Bcast 27(27.2) 90(95.7) 97(84.3) 102(94.4) 316(76.0)

quad double MPI Reduce 19(19.2) 1(1.1) 5(4.3) 5(4.6) 30(7.2)

task proc int MPI Send 15(15.2) - - - 15(3.6)

w double* - 9(9.1) - - - 9(2.1)

point num proc int MPI Recv - 1(1.1) 7(6.1) - 8(1.9)

x proc double* MPI Recv - 2(2.1) 5(4.3) - 6(1.4)

Other - - 3(3.0) - - - 3(0.7)

Output - - 6(6.1) - 1(0.9) 1(0.9) 8 (1.9)

Total - 99(100) 94(100) 115(100) 108(100) 416(100)

3.2 QUAD MPI

QUAD MPI[8] is a C++ program which uses MPI to approximate a multidimen-
sional integral using a quadrature rule in parallel. While the previous program
illustrated how a sparse data structure can be better profiled using variable
blame, this program helps to illustrate how some MPI operations will be mod-
eled. It is approximately 2000 lines of code and consists of 18 functions.

We ran the QUAD MPI program on four Red Hat Linux nodes using Open-
MPI 1.2.8 and recorded a range of 94-108 samples between the four nodes. As
discussed in Section 2.2, all calls to MPI functions were handled by assign-
ing blame to certain parameters based on the prototypes of the MPI programs
utilized. The program exits after printing out the solution, represented by the
variable quad.

The results for the run are shown in Table 2. The variables are listed in
descending order based on the total amount of blame assigned across all nodes.
For each variable, it is shown whether an MPI operation was a contributing
factor, but not necessarily the only source, of the blame. This program spends a
majority of its time reading in the data files and processing MPI calls with the
computation between those calls minimal. The variable with the most blame,
dim num, is due to program input from the master node at the beginning of the
program, which causes the three other nodes to create an implicit barrier. The
second highest blame count goes to quad, which is the variable that holds the
output for the program so a high number is to be expected.

3.3 HPL

HPL[9] is a C program that solves a linear system in double precision on dis-
tributed systems. It is an implementation of the “High Performance Computing
Linpack Benchmark.” Unlike FFP SPARSE, the operations are done on dense
matrices. HPL offers a variety of attractive features as a test program for blame
mapping. It utilizes MPI and BLAS calls and has wrappers for the majority of

Assigning Blame: Mapping Performance 29

the functions from both libraries. While the previous two programs were smaller
programs, HPL has approximately 18, 000 lines of code over 149 source files.

HPL is also interesting to examine because it is similar to many parallel
frameworks in that MPI communication is completely hidden from the user.
This means tracing MPI bottlenecks using traditional profiling techniques may
technically give you information about where the bottleneck is occurring. How-
ever, that information may be useless because the MPI operations are buried
deeply enough in complex data structures that knowing how these bottlenecks
affect variables at the top levels of the program is difficult to discover.

We ran the HPL program on 32 Red Hat Linux nodes connected via Myrinet
using OpenMPI 1.2.8 and recorded a range of 149-159 samples between the
nodes. The results for the run are shown in Table 3. This program differs from the
other two in that we have multiple blame points. Two of these blame points would
be explicitly generated. The other two are user selected and contain variables (A
and PANEL) that have a large amount of blame associated with them. The main
function serves primarily to read in program specifications and iterate through
the tests, which have their own output. For this reason, only the computation
associated with producing the computation grid is actually attributed to it while
one its called functions (HPL pdtest) has a much larger stake of the total blame.

In terms of the variables themselves, two different blame points, mat and A
(which is a pointer to mat), are assigned the majority of the blame. This is

Table 3. Variables and their blame at various blame points for run of HPL

Blame over 32 Nodes
Name Type Node Mean(Total %) Node St. Dev.

All Instances - 154.7(100) 2.7

main
grid HPL T grid 2.2(1.4) 0.4

main→HPL pdtest
mat HPL T pmat 139.3(90.0) 2.8
Anorm1 double 1.4(0.9) 0.8
AnormI double 1.1(0.7) 1.0
XnormI double 0.5(0.3) 0.7
Xnorm1 double 0.2(0.1) 0.4

main→HPL pdtest→HPL pdgesv
A HPL T pmat * 136.6(88.3) 2.9

main→HPL pdtest→HPL pdgesv→HPL pdgesv0
PANEL → L2 double* 112.8(72.9) 8.5
PANEL → A double * 12.8(8.3) 3.8
PANEL → U double * 10.2(6.6) 5.2

30 N. Rutar and J.K. Hollingsworth

intuitive since A contains a pointer to the local data for the matrix being solved
as well as the solution vector and some book keeping variables. Going deeper
down the call trace, we find the variable PANEL which is a structure with three
fields that carry a large portion of the blame of the program. These variables are
the storage containers for the computations in the LU factorization and through
container resolution it can be presented to the user as the single variable PANEL
or as separate fields. The blame is assigned locally to these three variables and
through a transfer function is then assigned to A in the caller function.

All the variables in Table 3 had contributions to their blame total from MPI
operations that occurred within HPL wrappers far down the call stack. HPL
is a well established benchmark so one can see that the decomposition is very
efficiently done with each variable being calculated almost equally across the
processors. An interesting caveat to this balance can be found when looking at
the fields within PANEL(L2,A,U), which have many MPI calls contributing to
the blame for these variables. For these nodes, there is some imbalance when
calculating some of these individual components but whatever imbalance occurs
immediately disappears when these variables have their blame absorbed by A
one level up on the stack. This is an interesting result, as standard profiling
programs might be concerned with the apparent bottlenecks occurring for these
lower operations when in fact the calculation of the solution vector (a field in
A) is calculated with excellent load balance between the nodes.

4 Related Work

The main area of related work deals with creating mappings in parallel pro-
grams at different levels of abstraction. Irvin introduces concepts involving map-
ping between levels of abstraction in parallel programs with his NV model[10]
as utilized by the ParaMap[11] tool. The Semantic Entries, Attributes, and
Associations(SEAA)[12], a followup to the NV model, addresses some of the
limitations of the NV model and adds some additional features. The SEAA
mappings are utilized in the TAU performance tool.[13]. The primary difference
between our mapping and these is the way the performance data is collected
and transferred. In NV and SEAA, regions of code are measured and mapped
up different levels of abstraction with these regions eventually being mapped to
variables in some cases. Our approach maps to variables at every level of abstrac-
tion and uses data flow operations as the primary mechanism for transferring
performance data. Using data flow allows us to push much of the computation
to static analysis, with runtime information supplementing that data whereas
NV and SEAA focus primarily on runtime information. Finally, we use sampling
as our primary technique for generating data versus delimited instrumentation
of a code region and measurements taken of that region.

Profiling tools that utilize sampling are the most similar to our approach. These
tools include prof[14], gprof[15], DCPI[16], HPCToolkit[17], and Speedshop[18].
Similar instrumentation based profiling tools include TAU[13] and SvPablo[19].
Like the mappings discussed above, the primary focus of these tools is code regions
and base data structures.

Assigning Blame: Mapping Performance 31

Dataflow analysis is utilized in many areas. Guo et al. [20] dynamically records
data flow through instrumentation at the instruction level to determine abstract
types. This is similar to the explicit data flow relationships we use in our blame
analysis. Other work dealing with information flow in control flow statements is
similar to the implicit data flow relationships we use[21,22].

5 Conclusions and Future Work

In this paper, we have outlined a style of variable mapping called blame mapping.
Blame mapping looks at the explicit assignments made to a variable directly, but
also concerns itself with all of the computation that went into any variable that
is eventually assigned to that variable. The computation of blame mapping takes
place partly in an intraprocedural manner to determine the exit variables for a
function and how much blame each exit variable is assigned. These exit variables
are then combined into a transfer function so an interprocedural analysis can be
constructed. This interprocedural analysis is combined with runtime information
obtained by sampling to create a repository of information from a program run
that can be used for performance analysis or debugging.

The target applications for these types of mappings are large parallel pro-
grams with many levels of abstraction, specifically large scientific frameworks.
Their abstractions are often tied to mathematical constructs so a representa-
tion of performance data in terms of variables may simplify the analysis process.
Furthermore, they are often large, long running parallel programs so the less
intrusive footprint introduced by sampling is desirable.

Our current experiments have involved smaller programs that exhibit similar
properties to those larger programs described above. The primary focus of our
future work will involve applying our mapping to these complex abstractions
and the larger programs that utilize them. This paper has included profiling
data attributed to data structures that is intuitive to where the blame should
lie and serves as a sanity check that this style of mapping can produce accurate
results. In more complex data structures, these mappings will not be as intu-
itive. For our future work, we will provide detailed case studies with these large
frameworks and how to utilize the mapping information. Furthermore, we will
provide a quantitative comparison between results given from blame mapping
and traditional profiling tools.

References

1. POOMA, http://acts.nersc.gov/pooma/
2. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes,

L.C., Smith, B.F., Zhang, H.: PETSc Web page (2001),
http://www.mcs.anl.gov/petsc

3. Deutsch, A.: On the complexity of escape analysis. In: POPL 1997: Proceedings
of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 358–371. ACM, New York (1997)

http://acts.nersc.gov/pooma/
http://www.mcs.anl.gov/petsc

32 N. Rutar and J.K. Hollingsworth

4. Lattner, C., Adve, V.: Llvm: A compilation framework for lifelong program analysis
& transformation. In: Proceedings of the 2004 International Symposium on Code
Generation and Optimization, CGO 2004 (2004)

5. Univ. of Maryland, Univ. of Wisconsin: StackWalker API Manual. 0.6b edn. (2007)
6. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A scalable cross-

platform infrastructure for application performance tuning using hardware coun-
ters, pp. 65–65 (2000)

7. FFP SPARSE, http://people.scs.fsu.edu/~burkardt/cpp_src/ffp_sparse/
8. QUAD, http://people.sc.fsu.edu/~burkardt/c_src/quad_mpi/
9. HPL, http://www.netlib.org/benchmark/hpl/

10. Irvin, R.B.: Performance Measurement Tools for High-Level Parallel Programming
Languages. PhD thesis, University of Wisconsin-Madison (1995)

11. Irvin, R.B., Miller, B.P.: Mapping performance data for high-level and data views
of parallel program performance. In: International Conference on Supercomputing,
pp. 69–77 (1996)

12. Shende, S.: The Role of Instrumentation and Mapping in Performance Measure-
ment. PhD thesis, University of Oregon (2001)

13. Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High
Perform. Comput. Appl. 20(2), 287–311 (2006)

14. Graham, S.L., Kessler, P.B., McKusick, M.K.: An execution profiler for modular
programs. Softw., Pract. Exper. 13(8), 671–685 (1983)

15. Graham, S.L., Kessler, P.B., McKusick, M.K.: gprof: a call graph execution profiler.
In: SIGPLAN Symposium on Compiler Construction, pp. 120–126 (1982)

16. Anderson, J., Berc, L., Dean, J., Ghemawat, S., Henzinger, M., Leung, S., Sites,
D., Vandevoorde, M., Waldspurger, C., Weihl, W.: Continuous profiling: Where
have all the cycles gone (1997)

17. Mellor-Crummey, J.M., Fowler, R.J., Whalley, D.B.: Tools for application-oriented
performance tuning. In: International Conference on Supercomputing, pp. 154–165
(2001)

18. SGI Technical Publications: SpeedShop User’s Guide
19. De Rose, L., Zhang, Y., Reed, D.A.: SvPablo: A multi-language performance anal-

ysis system. In: Puigjaner, R., Savino, N.N., Serra, B. (eds.) TOOLS 1998. LNCS,
vol. 1469, pp. 352–355. Springer, Heidelberg (1998)

20. Guo, P.J., Perkins, J.H., McCamant, S., Ernst, M.D.: Dynamic inference of ab-
stract types. In: ISSTA 2006: Proceedings of the 2006 international symposium on
Software testing and analysis, pp. 255–265. ACM, New York (2006)

21. McCamant, S., Ernst, M.D.: Quantitative information flow as network flow ca-
pacity. In: PLDI 2008, Proceedings of the ACM SIGPLAN 2008 Conference on
Programming Language Design and Implementation, Tucson, AZ, USA, June 9–
11, pp. 193–205 (2008)

22. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
J. Comput. Secur. 4(2-3), 167–187 (1996)

http://people.scs.fsu.edu/~burkardt/cpp_src/ffp_sparse/
http://people.sc.fsu.edu/~burkardt/c_src/quad_mpi/
http://www.netlib.org/benchmark/hpl/

	Assigning Blame: Mapping Performance to High Level Parallel Programming Abstractions
	Introduction
	Calculating Blame
	Data Flow Relationships
	Transfer Functions
	Mem-Containers
	Container Resolution
	Instance Generation
	Final Variable Blame

	Experimental Results
	FFP_SPARSE
	QUAD_MPI
	HPL

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

