
Parallel Skeletons for Variable-Length Lists
in SkeTo Skeleton Library

Haruto Tanno and Hideya Iwasaki

The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182–8585 Japan

tanno@ipl.cs.uec.ac.jp, iwasaki@cs.uec.ac.jp

Abstract. Skeletal parallel programming is a promising solution to simplify par-
allel programming. The approach involves providing generic and recurring data
structures like lists and parallel computation patterns as skeletons that conceal
parallel behaviors. However, when we focus on lists, which are usually imple-
mented as one-dimensional arrays, their length is restricted and fixed in existing
data parallel skeleton libraries. Due to this restriction, many problems cannot
be coded using parallel skeletons. To resolve this problem, this paper proposes
parallel skeletons for lists of variable lengths and their implementation within a
parallel skeleton library called SkeTo. The proposed skeletons enable us to solve
a wide range of problems including those of twin primes, Knight’s tour, and Man-
delbrot set calculations with SkeTo. We tested and confirmed the efficiency of our
implementation of variable-length lists through various experiments.

1 Introduction

Writing efficient parallel programs is difficult, because we have to appropriately de-
scribe synchronization, inter-process communications, and data distributions among
processes. Many studies have been devoted to this problem to make parallel program-
ming easier. Programming with parallel computation patterns (or skeletons), or skeletal
parallel programming [8,10,15] in short, has been proposed as one promising solution.
Skeletons abstract generic and recurring patterns within parallel programs and con-
ceal parallel behaviors within their definitions. They are typically provided as a library.
Skeletons can be classified into two groups: task parallel skeletons and data parallel
skeletons. Task parallel skeletons capture the parallelism by the execution of several dif-
ferent tasks, while data parallel skeletons capture the simultaneous computations on the
partitioned data among processors. Parallel skeleton libraries enable users to develop a
parallel program by composing suitable skeletons as if it were a sequential program.

However, in data parallel skeletons offered by existing parallel skeleton libraries,
the length of a list, which is usually implemented as an one-dimensional array, is fixed
due to an implementation reason. Thus, operations that dynamically and destructively
change a list’s length without allocating a new list within a memory area, e.g, adding
elements to a list or removing elements from it, are not permitted. As a result, some
problems cannot be solved efficiently or cannot be easily or concisely described by
using existing data parallel skeletons.

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 666–677, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Parallel Skeletons for Variable-Length Lists in SkeTo Skeleton Library 667

numbers = [2,3,4,5,6,...,50] ; // list of numbers
primes = []; // list of prime numbers
twin_primes = []; // list of twin primes
// make a list of primes using the Sieve of Eratosthenes
do {

prime = take front element from numbers
remove elements that are divisible by prime from numbers
add prime to primes

} while (prime <= sqrt(MAX));
concatenating primes and numbers
// primes is [2,3,5,7,11,13,...,47]
// make a list of twin primes from a list of primes
twin_primes = making pair of adjacent prime numbers
// twin_primes is [(2,3),(3,5),(5,7),(7,11),(11,13),...,(43,47)]
remove each pair of prime numbers whose difference is not two
// twin_primes is [(3,5),(5,7),(11,13),(17,19),(29,31),(41,43)]

Fig. 1. Pseudo-code for computing twin primes

For example, consider a problem to compute twin primes. Twin primes are pairs of
prime numbers that differ by two, e.g., (3, 5) and (5, 7). A pseudo-code for this problem
that computes twin primes of less than or equal to fifty is shown in Fig. 1. First, we
create a list of prime numbers from a list of integers by using the Sieve of Eratosthenes.
Second, we create a list of pairs of adjacent prime numbers. Finally, we remove every
pair whose difference is not two to obtain a list of twin primes. A list of fixed length
does not offer operations such as removing elements from a list, adding elements to it,
or concatenating two lists, since these operations obviously change the length of the list.
If a list of variable length (a list whose length may dynamically change) were supported,
we could solve this problem based on the concise code in Fig. 1.

We could emulate a variable-length list by using a fixed-length list whose elements
were pairs of a Boolean value and an integer. The Boolean value in an element indi-
cates whether the element is actually contained in the list or not. By using such a list,
we would be able to obtain a list of prime numbers with existing skeletons for fixed-
length lists. However, we cannot make a list of pairs of adjacent prime numbers, because
adjacent Boolean-integer pairs are not always adjacent prime numbers. Furthermore,
we are forced to write complicated code due to the manipulation of Boolean-integer
pairs.

The restriction that the length of a list is fixed mainly comes from an efficiency rea-
son. In existing skeleton libraries for distributed environments, elements in a list are
statically distributed at its initialization time. This enables these libraries to be effi-
ciently implemented without extra communications between nodes. The most straight-
forward way for removing this restriction is to provide new list skeletons, each of which
produces within a memory area an output list whose length is different from that of an
input list. However, these skeletons are inefficient in many cases, because they need ex-
tra memory allocations. Thus, we want new list skeletons with the following features.

– To avoid inefficient memory usage, each skeleton destructively reuse the memory
occupied by its input list for its output list that may have different length.

– To avoid inefficient data communications that dissolve uneven data distributions of
elements of a list, dynamic and flexible data re-distribution mechanism is necessary
in the implementations of the new skeletons.

668 H. Tanno and H. Iwasaki

In this paper, we propose data parallel skeletons for variable-length lists and imple-
ment them within a parallel skeleton library called SkeTo [14,16]. The skeletons for
variable-length lists enable us to solve a wide range of problems with SkeTo.

The research discussed in this paper makes three main contributions.

1. We analyzed typical patterns of problems that needed variable-length lists and de-
termined which skeletons and operations would be supported in the SkeTo library.
Although the new skeletons and operations that were supported were quite com-
mon, especially within the community of functional programming languages, they
should suffice to describe programs for typical problems.

2. We demonstrated that a block-cyclic representation of a list with a size table ef-
fectively enabled a variable-length list to be implemented. This representation was
flexible enough to cope with changes in the list’s length, and enabled the library to
delay the relocation of elements in a list whose elements were unevenly distributed
between nodes.

3. Through tests in various experiments, we confirmed the efficiency of our imple-
mentation of variable-length lists.

2 Existing List Skeletons in SkeTo

SkeTo (Skeletons in Tokyo) [14,16] is a parallel skeleton library intended for distributed
environments such as PC clusters, in which all machines (called nodes after this) in the
cluster are composed of a single-core CPU. It has three distinguishing features.

1. It provides a set of data parallel skeletons that are based on the theory of Construc-
tive Algorithmics [4] for recursively-defined data structures and functions.

2. It enables users to write parallel programs as if they were sequential, since the
distribution, gathering, and parallel computation of data are concealed within con-
structors of data types or definitions of parallel skeletons,

3. It provides various kinds of data types such as lists (distributed one-dimensional
arrays), matrices (distributed two-dimensional arrays), and trees (distributed binary
trees).

SkeTo is implemented in C++ with the MPICH library. A list provided by the current
version of SkeTo is restricted to be of fixed length. The most important skeletons for
lists are map, reduce, scan, and zip.

The map is a skeleton that applies a function to all elements in a list. The reduce is
a skeleton that collapses a list into a single value by repeated applications of a certain
associative binary operator. The scan is a skeleton that accumulates all intermediate
results for reduce. The zip creates a list of pairs of corresponding elements in two given
lists of the same length. By letting ⊕ be an associative operator, these four skeletons
can be informally defined as

map (f, [x1, x2, . . . , xn]) = [f(x1), f(x2), . . . , f(xn)],
reduce ((⊕), [x1, x2, . . . , xn]) = x1 ⊕ x2 ⊕ · · · ⊕ xn,

scan ((⊕), [x1, x2, . . . , xn]) = [x1, x1 ⊕ x2, · · · , x1 ⊕ x2 ⊕ · · · ⊕ xn], and
zip ([x1, x2, . . . , xn], [y1, y2, . . . , yn]) = [(x1, y1), (x2, y2), . . . , (xn, yn)].

Parallel Skeletons for Variable-Length Lists in SkeTo Skeleton Library 669

Table 1. C++ interfaces of existing list.

List skeletons

dist_list<A>* map(F& f, dist_list<A>* as) Map a list
void map_ow(F& f, dist_list<A>* as) Map a list with overwrite
A reduce(OPLUS& oplus, dist_list<A>* as) Reduce a list
dist_list<A>* Scan a list
scan(OPLUS& oplus, dist_list<A>* as)

void scan_ow(OPLUS& oplus, dist_list<A>* as) Scan a list with overwrite
dist_list<std::pair<A,B> >* Zip a list
zip(dist_list<A>* as,dist_list* bs)

List constructors

dist_list<A>::dist_list(F& f, int size) Create a list using f
dist_list<A>::dist_list(A* array, int size) Create a list using array

A list is provided as C++ template class dist_list<A>, where A is a template pa-
rameter. This is implemented as a distributed one-dimensional array. A list is initialized
by using its constructor in two ways; the first is given the initial data to be distributed to
each corresponding node, and the second is given a generator function to compute the
initial values of the elements in the list at each node. Table 1 shows the C++ interfaces
of the skeletons and constructors of the lists.

In the current implementation of SkeTo, the elements in lists are equally distributed
to each node using block placement. The data placement does not change during com-
putation because no skeletons that can dynamically change a list’s length are provided.

3 Design of Variable-Length Lists

3.1 Problems That Need Variable-Length Lists

We classified problems that need variable-length lists into three groups.

1. Problems that leave such elements in a given list that satisfy various conditions.
2. Searching problems in which the number of candidates for solutions may dynami-

cally change.
3. Iterative calculations in which computational loads for all elements in a list lack

uniformity.

Examples in the first group include the problem of twin primes discussed in Sec. 1 and
the problem where the convex hull of a set of points is computed by using the gift-
wrapping algorithm. To solve the twin-primes problem, as we have already stated in
Sec. 1, we need to add an element to a list, remove an element from it, and concatenate
two lists. To solve the problem of the convex hull, we need to extract points that create
the convex hull from a list of points and add them into another list. Since fixed-length
lists do not have these operations, we cannot solve these problems.

An example in the second group is the Knight’s Tour problem. Given a chess board
with N × M squares, this problem involves finding the numbers of paths for a knight

670 H. Tanno and H. Iwasaki

that visits each square only once. Even though we can represent possible board states
during computation with a fixed-length list, we cannot represent new board states after
the next move by the knight. This is because each state may generate zero or many next
states and therefore the length of the list has to be dynamically changed. To describe a
program for this problem, we have to create a list of possible board states after the first
k moves by the knight locally on the master node and then distribute these among nodes
for further sequential computation on each node. It is a difficult task to create such a
program by only using lists of fixed length.

Examples in the third group include calculations of Mandelbrot and Julia sets, in
which the computational load at each point on a plane is dramatically different from the
other points. When we represent a set of points on a plane with a fixed-length list, we
cannot solve this problem efficiently due to load imbalance. If we can remove elements
that have already finished their calculations in a list in iterative calculations (e.g., at
regular intervals), we can solve these problems efficiently. Unfortunately, we cannot
remove elements from a fixed-length list.

3.2 Skeletons and Operations for Variable-Length Lists

To solve the problems in the previous section, we need operations that add elements
to a list, remove elements from it, and concatenate two lists to constitute a long list.
To achieve these goals, we propose two skeletons, namely, concatmap and filter, and
five operations, namely, append, pushfront, pushback, popfront, and popback. In
addition, we revised the definition of zip to accept two lists of different lengths.

The concatmap is a skeleton that applies a function to every element in a list and
concatenates the resulting lists to generate a flattened list. The filter is a skeleton that
takes a Boolean function, p, and a list, and leaves elements in the list that satisfy p. The
append is an operator that concatenates two lists. Note that they do not necessarily
have the same length. The popfront and popback are respective operations that remove
an element from the front and the back in a list. The pushfront and pushback are
respective operations that add an element to the front or the back in a list. They are
informally defined as

concatmap (f, [x1, x2, . . . , xn]) = [x11, x12, . . . , x1m1 , x21, x22, . . . , x2m2 ,
. . . , xn1, xn2, . . . , xnmn],

where f (xi) = [xi1, xi2, . . . , ximi],
filter (p, [x1, x2, . . . , xn]) = concatmap (f, [x1, x2, . . . , xn]),

where f (x) = if p (x) then [x] else [],
append ([x1, . . . , xn], [y1, . . . , ym]) = [x1, . . . , xn, y1, . . . , ym],

popfront ([x1, x2, . . . , xn]) = (x1, [x2, x3, . . . , xn]),
popback ([x1, x2, . . . , xn]) = (xn, [x1, x2, . . . , xn−1]),

pushfront (v, [x1, x2, . . . , xn]) = [v, x1, x2, . . . , xn], and
pushback (v, [x1, x2, . . . , xn]) = [x1, x2, . . . , xn, v].

By using these skeletons and operations, we can describe programs for the problems dis-
cussed in Sec. 3.1 with variable-length lists. As examples, we have given pseudo-codes
for the Knight’s Tour problem (Fig. 2) and the Mandelbrot set calculation
(Fig. 3).

Parallel Skeletons for Variable-Length Lists in SkeTo Skeleton Library 671

boards = []; //list of solution boards
// add initial board to boards
pushback(initBoard, boards); // increase boards dynamically up to MAXSIZE
while(length(boards) < MAXSIZE){

concatmap(NextBoard(), boards); // generate next moves from each boards
}
// search all solutions with depth first order
concatmap(Solve(), boards); // boards is a list of solution boards

Fig. 2. Pseudo-code for Knight’s Tour problem

points = [...]; // list of points
result_points = []; // list of calculation results
for (int i=0; i<maxForCount; i++){

map(Calc(), points);// progress calculations in small amounts
// remove elements that have already finished calculation using filter
end_points = filter(IsEnd(), points);
append(result_points, end_points); // add them to result_points

}
append(result_points, points); // result_points is a list of calculation results

Fig. 3. Pseudo-code for Mandelbrot-set calculation

4 Implementation

4.1 C++ Interfaces and Program Example

We implemented the variable-length lists as a new library of SkeTo. Variable-length lists
are provided as a C++ template class called dist_list<A>, which has all interfaces
of existing fixed-length lists for compatibility. Thus, a fixed-length list is a special case
of a variable-length list where the length of the list never changes. Users do not need
to change their existing programs based on fixed-length lists to use the new library.
Table 2 shows C++ interfaces of skeletons and operations that were introduced in this
new library. Note that push_front, push_back, pop_front, and pop_back
destructively update the input list as a side effect.

Figure 4 shows a concrete C++ program for the twin primes problem. First, we re-
move every element whose value is not a prime number with filter_ow to create a
list of prime numbers. Second, to create a list of pairs of adjacent prime numbers, we
apply zip to two lists; the first is a list of prime numbers and the second is also a list
of prime numbers in which the first prime, 2, is removed by pop_front. Finally, we
remove every pair whose difference is not two by using filter_ow to obtain a list of
twin primes.

4.2 Data Structures

There are two requirements for the data structures of variable-length lists. First, each
node has to know the latest information on the numbers of elements in other nodes to
enable programs to access arbitrary elements in the list and to detect load imbalance.
Second, we have to reduce the number of times of data relocation as few as possible
because this involves enormous overheads in transferring large amounts of data from
one node to another.

672 H. Tanno and H. Iwasaki

Table 2. C++ interfaces of the skeletons and operations

List skeletons

dist_list<A>* Filter a list
filter(F& f, dist_list<A>* as)

void filter_ow(F& f, dist_list<A>* as) Filter a list with overwrite
dist_list<A>* Concatmap a list
concatmap(F& f, dist_list<A>* as)

void concatmap_ow(F& f, dist_list<A>* as) Concatmap a list with overwrite

List operations

void Concatenate lists
dist_list<A>::append(dist_list<A>* as)

void dist_list<A>::push_front(A v) Add v at front of a list
void dist_list<A>::push_back(A v) Add v to the back of a list
A dist_list<A>::pop_front() Obtain an element from the front

of a list
A dist_list<A>::pop_back() Obtain an element from the back

of a list

To achieve this end, we introduced size tables for the first requirement, and block-
cyclic placement for the second. A size table has information on the number of elements
at each node. When the number of elements changes due to concatmap or filter, the
size table in each node is updated using inter-node communication. Moreover, when we
concatenate two lists with append, we adopt block-cyclic placement without having to
relocate elements on the lists.

Figure 5 shows an example of the initial data structure of a variable-length list, as,
in which elements in the list have been equally distributed among nodes using block
placement. When we remove every element whose value is a multiple of three with
filter_ow, the number of elements in as changes in each node. Thus, the size table
at each node is accordingly updated. If the numbers of elements in nodes become too
unbalanced, the data in the list are automatically relocated. Returning to the example of

dist_list<int>* numbers = new dist_list<int>(SIZE);
dist_list<int>* primes = new dist_list<int>(0);
dist_list<pair<int, int> >* twin_primes;
...add integers, which is more than 1, to numbers...
// make a list of primes using the Sieve of Eratosthenes
int prime;
do {

prime = numbers->pop_front();
skeletons::filter_ow(IsNotMultipleOf(prime), numbers);
primes->push_back(prime);

} while (val <= sqrt_size);
primes->append(numbers);
// make a list of twin primes from a list of primes
dist_list<int>* dup_primes = primes->clone<int>();
dup_primes->pop_front();
twin_primes = skeletons::zip(primes, dup_primes);
filter_ow(twin_prime, IsCouple());
// twin_primes is solution list

Fig. 4. C++ program for twin primes problem

Parallel Skeletons for Variable-Length Lists in SkeTo Skeleton Library 673

0 1 2 3 4

0 1 2 3 4

3

1 2

34

5

4 5

6 6 5 5

5 6 6

6 6 5 5
35 6 6

4 3

6 6 5 5

6 7 8 9 1011 1213141516 1718192021

0 1 2 3 4

0 1 2 3 4 5

5 6 7 8 9 10 111213 1415 171819

6 6 5 5 6 6 5 5

35 6 6 35 6 6 35 6 6

6 6 5 5
35 6 6

6 6 5 5
35 6 6

6 6 5 5
35 6 6

7 8 1011 1314 171920

34 4 3 34 4 3 34 4 3

Node #0 Node #1 Node #2 Node #3

size table

elements

6 7 8 9 1011

5 6 7 8 9 10

1213141516

111213

1718192021

1415 171819

#0#1#2#3
filter_ow(NotMultipleOf(3),as)

#0#1#2#3 #0#1#2#3 #0#1#2#3

#0#1#2#3 #0#1#2#3 #0#1#2#3 #0#1#2#3

#0#1#2#3 #0#1#2#3 #0#1#2#3 #0#1#2#3

#0#1#2#3 #0#1#2#3 #0#1#2#3 #0#1#2#3

as.append(bs)

as

as

bs

as

size table

elements

size table

elements

size table

elements

16

16

16

Fig. 5. Data structure of proposed variable-length list

list as, when we concatenate as and bs to make a long list with append, we adopt
block-cyclic placement without relocating the entire amount of data in the resulting list.
After this, we will call part of a list a block, whose elements are sequentially allocated
on each node, and will call the number of blocks a block count. For example, in Fig. 5,
we concatenated two lists (as and bs) whose block counts are both one, and the block
count of the resulting list (destructively updated as) is two.

4.3 Implementation of Skeletons

We implemented all skeletons based on the data structures described in the previous
subsection. The map, concatmap, and filter skeletons simply apply a given function
to each block in the local lists at each node. Note that they do not need any inter-node
communication. These skeletons do not degrade their performances due to the number
of block counts on a list.

The reduce and scan skeletons need to transfer the results of local calculation from
one node to another. The reduce calculates local reductions at each node and then folds
all local results by using inter-node communication based on the binary-tree structure
of the nodes to obtain the final result. The scan first applies a local scan to each block at
each node and then shares the results by using all-to-all communication. Finally, each
node calculates the residual local scan. The overheads for these two skeletons due to
inter-node communication increase in proportion to the block counts.

The zip skeleton first relocates one of the given lists to make the shapes of the lists
the same. It then creates a list of pairs of corresponding elements.

4.4 Data Relocation

In two cases, we have to relocate the data in a list to maintain efficient calculations.

1. When the numbers of elements on each node become too unbalanced.
2. When the block counts of a list reach a large value.

674 H. Tanno and H. Iwasaki

Case 1 is caused by the applications of concatmap or filter. Case 2 is caused by the
concatenation of lists with append. This reduces the efficiencies of not only reduce
and scan, but also that of updating the size table.

To detect case 1, we introduce the measure imbalance of a list. When the value of
imbalance becomes greater than a threshold value, tu, we relocate the data in the list.
The imbalance of list as is defined as:

imbalance (as) = n × max (P1, . . . , Pn)/(P1 + · · · + Pn)
where Pi =

∑m
j=1 pij , n = the number of nodes, m = the block count of as,

pij = the number of elements of the j-th block at the i-th node.

Using a rough estimate by letting the value of imbalance be r, it takes r times longer
to apply a skeleton than where the numbers of elements in each node are completely
even. The value of tu is empirically determined to be 1.5.

For case 2, we relocate the data in a list when its block count becomes greater than a
threshold value, tb. The value of tb is empirically determined to be 2048.

The relocation for both cases is performed, if necessary, before each skeleton is
applied. After relocation, the elements in the list are evenly distributed with block
placement, i.e., the block count becomes 1.

5 Experiment

This section describes the effectiveness of the variable-length lists we propose by pre-
senting the results for micro- and macro-benchmarks. The experimental environment
we used was a PC cluster system with 16 processors connected through a 1000 BaseT
Ethernet. Each PC had an Intel Pentium 4 (3.0 GHz) CPU and 1 GB of main mem-
ory. The operating system was Linux kernel 2.6.8., the compiler was GCC 3.3.5 with
optimizing level O2, and the MPI implementation was MPICH 1.2.6.

5.1 Micro-benchmark

The efficiency of skeletons and data relocation degrades as the block count of a list
increases. To evaluate these overheads, we measured the execution times for applying
map, reduce, and scan to an input list of 80,000,000 elements, increasing the block
count of the list from 1 to 4000. We used two functions: the first had a short execution
time (only a single multiplication) and the second had a long execution time (1000
multiplications). We also measured the running times for the data relocation in a list.

The results are listed in Table 3. Execution times for block count 1 can be regarded as
those of the existing SkeTo implementation that supports only fixed-length lists. Thus,
each difference between execution times for block count m (m > 1) and 1 is the over-
head due to the block-cyclic implementation of variable-length lists. Little overhead was
observed in the applications of map to a list even if its block count was large. When the ap-
plied function needed a short execution time, we can see rather large overheads in reduce
and scan to lists with large block counts. These overheads are due to the cost of inter-
node communications for transferring the results of local calculations, and, particularly
for scan, the cost of the residual local scan. In contrast, the overhead of these skeletons is
relatively small when the applied function needs a long time for execution. The overhead
for data relocation is large. Thus, it would be effective to delay the relocation of data.

Parallel Skeletons for Variable-Length Lists in SkeTo Skeleton Library 675

Table 3. Results for micro-benchmark

Execution time (s)
Block count 1 10 100 1000 2000 3000 4000
Map (short duration) 0.0128 0.0129 0.0128 0.0128 0.0129 0.0130 0.0132
Reduce (short duration) 0.0183 0.0182 0.0183 0.0191 0.0194 0.0197 0.0200
Scan (short duration) 0.0407 0.0408 0.0411 0.0443 0.0484 0.0530 0.0580
Map (long duration) 16.8 16.8 16.8 16.8 16.8 16.8 16.8
Reduce (long duration) 16.9 16.9 16.9 16.9 16.9 16.9 17.0
Scan (long duration) 33.8 33.8 33.8 33.9 33.9 34.0 34.1
Data relocation – 3.74 4.64 4.67 4.66 4.62 4.72

Table 4. Results for macro-benchmark

Execution time (s) / Ratio
Number of nodes 1 2 4 8 16
Twin primes 16.86 / 1.00 8.84 / 0.52 4.52 / 0.27 2.38 / 0.14 1.52 / 0.09
Gift-wrapping method 8.59 / 1.00 4.38 / 0.51 2.21 / 0.26 1.13 / 0.13 0.59 / 0.07
Knight’s tour 11.92 / 1.00 6.05 / 0.51 3.34 / 0.28 2.53 / 0.21 1.22 / 0.10
Mandelbrot set (var. list) 63.4 / 1.00 31.8 / 0.50 16.2 / 0.26 8.2 / 0.13 4.2 / 0.07
Mandelbrot set (fix. list) 61.2 / 1.00 30.6 / 0.50 29.9 / 0.49 20.8 / 0.34 11.9 / 0.19
Julia set (var. list) 60.0 / 1.00 30.1 / 0.50 15.1 / 0.25 7.6 / 0.13 4.1 / 0.07
Julia set (fix. list) 56.7 / 1.00 28.3 / 0.50 21.6 / 0.38 12.3 / 0.22 6.7 / 0.12

5.2 Macro-benchmark

We measured the execution times of the programs to solve the problems discussed in
Sec. 3. We provided the following input to each problem: a list of 10,000,000 integers
for the twin primes problem, 1,000,000 randomly generated and uniformly distributed
points for the convex hull problem, a 5 × 6 board for the Knight’s Tour, and 1,000 ×
1,000 coordinates for both the Mandelbrot and Julia set problems with 100 iterative cal-
culations × 100 times. We also measured the execution times of the programs for the
Mandelbrot and Julia set problems using fixed-length lists with 10,000 iterations. The
results are shown in Table 4. These results indicate excellent performance in all prob-
lems with variable-length lists. The programs for the Mandelbrot and Julia set problems
with variable-length lists demonstrated particularly good speedups compared to those
with fixed-length lists because there was adequate load balancing.

6 Related Work

Skeletal parallel programming was first proposed by Cole [8] and a number of systems
(libraries) have been proposed so far. P3L [3] supports both data parallel and task paral-
lel skeletons. A P3L program has a two-layers structure. Higher skeleton level is writ-
ten in a functional notation, while lower base language level is described in the C lan-
guage. Muesli [13] is a C++ library that also supports data parallel and task parallel

676 H. Tanno and H. Iwasaki

skeletons without syntactic enhancements. Both P3L and Muesli offer lists (distributed
one-dimensional arrays) and matrices (distributed two-dimensional arrays).
Quaff [11] is another skeleton library in C++. It relies on template-based meta-
programming techniques to attain high efficiency. However, these three libraries do not
support variable-length lists. The latest version of eSkel [5,9] supports task parallel
skeletons for pipelining or master-worker computations, putting emphasis on addressing
the issues of nesting of skeletons and interaction between parallel activities. However, it
does not support data parallel skeletons for lists like map and reduce. Lithium [1] is a li-
brary written in Java that supports common data and task parallel skeletons. Muskel [2],
which is a successor of Lithium, is a full Java library targeting workstation clusters, net-
works, and grids. They are implemented based on (macro) data flow technology rather
than template technology exploited by SkeTo. Calcium [6] is also a Java skeleton library
on a grid environment. It mainly focuses on performance tuning of skeletal programs.

Another group of libraries that support distributed arrays contains MCSTL[17], and
STAPL[18], each of which is an extension of C++ standard template library (STL)
for parallel environments. MCSTL has a distributed fixed array whose target is shared-
memory multiprocessor environments. STAPL has pVector and pList, which
correspond to variable-length arrays and lists, and it targets both shared- and distributed-
memory environments. However, STAPL does not have operations such as zip and con-
catmap, since they only provide the same operations as STL. Data Parallel Haskell
[7,12] offers distributed nested lists in which we can apply filter and concatmap to
lists and concatenate lists as well as our variable-length lists. However, it only targets
shared-memory multiprocessor environments.

7 Conclusion

We proposed parallel skeletons for variable-length lists and their implementation within
a parallel skeleton library called SkeTo. A variable-length list enables us to dynami-
cally increase/decrease the number of elements and thus solve a wide range of prob-
lems including those of twin primes, Knight’s tour, and Mandelbrot set calculation. Our
implementation adopted a block-cyclic representation of lists with size tables, whose
efficiency was proved through tests conducted in various experiments. We intend to
include the variable-length lists and related skeletons presented in this paper in future
releases of SkeTo.

Acknowledgments. We wish to thank Masato Takeichi, Kenetsu Hanabusa, Zhenjiang
Hu, Kiminori Matsuzaki, and other POP members in Tokyo for their fruitful discussions
on the SkeTo library. This work was partially supported by Grant-in-Aid for Scientific
Research (20500029) from the Japan Society of the Promotion of Science.

References

1. Aldinucci, M., Danelutto, M., Teti, P.: An Advanced Environment Supporting Structured
Parallel Programming in Java. Future Gener. Comput. Syst. 19(5), 611–626 (2003)

2. Aldinucci, M., Danelutto, M., Dazzi, P.: Muskel: an Expandable Skeleton Environment. Scal-
able Computing: Practice and Experience 8(4), 325–341 (2007)

Parallel Skeletons for Variable-Length Lists in SkeTo Skeleton Library 677

3. Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S., Vanneschi, M.: P3L: A Structured High
Level Programming Language, and its Structured Support. Concurrency: Pract. Exper. 7(3),
225–255 (1995)

4. Backhouse, R.: An Exploration of the Bird-Meertens Formalism. In: STOP Summer School
on Constructive Algorithmics, Abeland (1989)

5. Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Flexible skeletal programming with eSkel. In:
Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 761–770. Springer,
Heidelberg (2005)

6. Caromel, D., Leyton, M.: Fine tuning algorithmic skeletons. In: Kermarrec, A.-M., Bougé,
L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 72–81. Springer, Heidelberg (2007)

7. Chakravarty, M.M.T., Leshchinskiy, R., Jones, S.L.P., Keller, G., Marlow, S.: Data Parallel
Haskell: A Status Report. In: 2007 ACM Workshop on Declarative Aspects of Multicore
Programming (DAMP 2007), pp, pp. 10–18. ACM Press, New York (2007)

8. Cole, M.: Algorithmic Skeletons: A Structured Approach to the Management of Parallel
Computation. Research Monographs in Parallel and Distributed Computing, Pitman (1989)

9. Cole, M.: Bringing Skeletons out of the Closet: a Pragmatic Manifesto for Skeletal Parallel
Programming. Parallel Comput. 30(3), 389–406 (2004)

10. Darlington, J., Field, A.J., Harrison, P.G., Kelly, P.H.J., Sharp, D.W.N., Wu, Q., While, R.L.:
Parallel Programming Using Skeleton Functions. In: Reeve, M., Bode, A., Wolf, G. (eds.)
PARLE 1993. LNCS, vol. 694, pp. 146–160. Springer, Heidelberg (1993)

11. Falcou, J., Sérot, J., Chateau, T., Lapresté, J.T.: QUAFF: Efficient C++ Design for Parallel
Skeletons. Parallel Comput. 32(7), 604–615 (2006)

12. Jones, S.L.P., Leshchinskiy, R., Keller, G., Chakravarty, M.M.T.: Harnessing the Multicores:
Nested Data Parallelism in Haskell. In: IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2008 (2008)

13. Kuchen, H.: A skeleton library. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS,
vol. 2400, pp. 620–629. Springer, Heidelberg (2002)

14. Matsuzaki, K., Emoto, K., Iwasaki, H., Hu, Z.: A Library of Constructive Skeletons for
Sequential Style of Parallel Programming. In: 1st International Conference on Scalable In-
formation Systems, InfoScale 2006 (2006)

15. Rabhi, F.A., Gorlatch, S. (eds.): Patterns and Skeletons for Parallel and Distributed Comput-
ing. Springer, Heidelberg (2002)

16. SkeTo Project, http://www.ipl.t.u-tokyo.ac.jp/sketo/
17. Singler, J., Sanders, P., Putze, F.: MCSTL: The multi-core standard template library. In: Ker-

marrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 682–694.
Springer, Heidelberg (2007)

18. Tanase, G., Bianco, M., Amato, N.M., Rauchwerger, L.: The STAPL pArray. In: 2007
Workshop on Memory performance: Dealing with Applications, systems and architecture
(MEDEA 2007), pp. 73–80. ACM Press, New York (2007)

http://www.ipl.t.u-tokyo.ac.jp/sketo/

	Parallel Skeletons for Variable-Length Lists in SkeTo Skeleton Library
	Introduction
	Existing List Skeletons in SkeTo
	Design of Variable-Length Lists
	Problems That Need Variable-Length Lists
	Skeletons and Operations for Variable-Length Lists

	Implementation
	C++ Interfaces and Program Example
	Data Structures
	Implementation of Skeletons
	Data Relocation

	Experiment
	Micro-benchmark
	Macro-benchmark

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

