A Holistic Approach towards Automated
Performance Analysis and Tuning*

Guogjing Cong, I-Hsin Chung, Huifang Wen, David Klepacki, Hiroki Murata,
Yasushi Negishi, and Takao Moriyama

IBM Research

Abstract. High productivity to the end user is critical in harnessing the
power of high performance computing systems to solve science and engi-
neering problems. It is a challenge to bridge the gap between the hard-
ware complexity and the software limitations. Despite significant progress
in language, compiler, and performance tools, tuning an application re-
mains largely a manual task, and is done mostly by experts. In this paper
we propose a holistic approach towards automated performance analy-
sis and tuning that we expect to greatly improve the productivity of
performance debugging. Our approach seeks to build a framework that
facilitates the combination of expert knowledge, compiler techniques, and
performance research for performance diagnosis and solution discovery.
With our framework, once a diagnosis and tuning strategy has been de-
veloped, it can be stored in an open and extensible database and thus be
reused in the future. We demonstrate the effectiveness of our approach
through the automated performance analysis and tuning of two scientific
applications. We show that the tuning process is highly automated, and
the performance improvement is significant.

1 Introduction

Developments in high performance computing (HPC) have primarily been driven
so far by bigger numbers of floating-point operations per second (FLOPS). Com-
plex HPC systems pose a major challenge to end users to effectively harness the
computing capability. It can take tremendous efforts of a user to develop an
application and map it onto the current supercomputers. The US department
of advanced research projects agency (DARPA) sponsored the high productiv-
ity computing system initiative [7] to develop technologies that help bridge the
productivity gap. Improving productivity and maintaining high performance in-
volve multiple areas of computer science research. Despite significant progress,
deploying an application to complex architectures for high performance remains
a highly manual process, and demands expertise possessed by few engineers.

A typical tuning life cycle is as follows. When the performance of an applica-
tion is below expectation, a user is faced with the task of observing the behavior,

* This material is based upon work supported by the Defense Advanced Research
Projects Agency under its Agreement No. HR0011-07-9-0002.

H. Sips, D. Epema, and H.-X. Lin (Eds.): Buro-Par 2009, LNCS 5704, pp. 33-J44] 2009.
© Springer-Verlag Berlin Heidelberg 2009

34 G. Cong et al.

formulating hypothesis, and conducting validation tests. First the application is
instrumented for performance data collection. Crude hypothesis can be formed
based on the data, and observing for minute details (also called tracing) to refine
or validate follows. Assuming trace data (oftentimes they are of a huge amount)
can be efficiently manipulated, a user has to correlate the runtime behavior with
the program characteristics. If a mismatch between the application and the ar-
chitecture/system is detected, the user usually needs to trace back to the source
program to find where the mismatch is introduced. Familiarity with the inter-
nals of the compiler is a must since a program goes through transformations by
a compiler. The mismatch can be introduced by the compiler (not implement-
ing the best transformations due to its constraints), or by the source program
(e.g., implementing a poorly performing algorithm). Once the cause for the per-
formance problem is identified, the user chooses the appropriate ones from her
repertoire of optimizations for implementation. In doing so she needs to make
sure the transformation does not violate program constraints, and conserve other
desired properties such as portability.

Thus performance diagnosis requires in-depth knowledge of algorithm, ar-
chitecture, compiler, and runtime behavior, and involves collecting, filtering,
searching, and interpreting performance data. Tuning further requires coordi-
nating the intricate interactions between multiple components of a complex sys-
tem. Performance analysis and tuning remain challenging and time consuming
even for experienced users. In our study we improve the tuning productivity
by providing software services that help the automation of the process. Auto-
mated performance optimization has been studied at limited scales (as opposed
to whole application or system scale) under different contexts. Here we give brief
summary of related work.

An optimizing compiler is one of the most important auto-tuners. Profile-
guided compilers (e.g., see [3]) find even further optimization opportunities in
a program by utilizing both static and runtime information. Powerful as it is,
a compiler does not tune well programs that heavily utilize specialized primi-
tives that are largely outside a compiler’s control. Some examples of these prim-
itives include MPI communication, I/O operation, and pre-developed library
routines. A compiler is usually not able to conduct transformations on the algo-
rithms. It also lacks domain knowledge that is crucial to tunings dependent on
the inputs. Even within standard loop transformations, the compile time con-
straint oftentimes does not allow a compiler to search for the best parameters or
combinations.

Auto-tuning libraries (e.g., see [T6/14]) are able to tune themselves (e.g., search
for appropriate parameter values) for a given architecture configuration. As the
tuning is for a predefined set of programs (usually much smaller than a regular
application) with relatively limited transformations, accurate modeling and in-
telligent searching are the main effective techniques. These techniques alone in
general will not tune an application.

Performance tools (e.g., see [ITJT0II2/T3]) traditionally facilitate performance
data collection and presentation. They aim to provide clues to trained experts

A Holistic Approach towards Automated Performance Analysis and Tuning 35

about possible performance problems. They in general do not explicitly point
out the problem itself, and require a lot of efforts to digest the performance data.

In this paper we present our approach towards automated performance anal-
ysis and tuning. We work with experts to observe the way they tune their appli-
cations, and attempt to automate the procedure by mining their knowledge. We
developed a framework that actively searches for known performance patterns
instead of passively recording all the tracing information. Such a framework is
designed to be open and extensible to accommodate new performance patterns.
We also provide a mechanism to collect, compare, and correlate performance data
from different aspects of the system for performance diagnosis. The framework
also attempts to mitigate performance problems by suggesting and implement-
ing solutions. Our approach attempts to unify performance tools, compiler, and
expert knowledge for automated performance tuning.

The remainder of this paper is organized as follows: Section [2 describes our
strategy for the development of automatic performance optimization tools.
Section [B] describes our approach for incorporating multiple performance tools
and compiler analysis in performance problem diagnosis. Section M presents
automated solution proposal. Section [presents our case study. We present
concluding remarks and future work in Section [Gl

2 Performance Optimization Strategy

Working with performance experts, we propose a holistic approach towards per-
formance analysis and tuning. We provide assistance to the user throughout the
tuning process, that is, our framework provides services for performance data
collection, bottleneck identification, solution discovery and implementation, and
iteration of the tuning process. The framework strives to give definite diagnosis
to a problem so that the user is no longer left with a sea of perplexing data.
Performance tools, compiler, and expert knowledge are key components of our
system. Integrating these components improves the tuning efficiency by provid-
ing means to compare and correlate performance data from different dimensions,
and to propose and implement solutions.

Our work focuses on three levels of support to boost productivity. The first
is to provide easy access to a wide array of information from static analysis,
runtime behavior, algorithm property, architecture feature, and expert domain
knowledge. Based upon such information, a mechanism to compare and correlate
performance metrics from different aspects (e.g., computation, memory, commu-
nication, I/0) is developed, and helps accurately pinpoint the cause of perfor-
mance problems. The ultimate goal is to automate tuning as an expert would.
It involves proposing solutions and implementing them. Granted that currently
(even in the near future) we do not foresee our framework to be able to gener-
ate knowledge itself, it can be instructed to follow certain tuning routines of an
expert. Mining as much knowledge as possible from the experts liberate them
from the repetitive tasks and is expected to greatly improve the productivity of
regular users.

36 G. Cong et al.

Our methodology can be summarized as follows. We collect the cause of per-
formance problems from literature and performance experts, and store them as
patterns defined on performance metrics. Our framework inspects and instru-
ments the application, and actively searches for known patterns in the pattern
database. Once a pattern is discovered, we claim that the corresponding bottle-
neck is found, and the framework consults the knowledge database for possible
solutions. Solutions are evaluated, and implemented if desired by the user. There
are two aspects of our work. One is infrastructure support. That is, we develop
the necessary facilities for the automation process. The other is to populate the
framework with a rich collection of bottleneck and solution definitions. We real-
ize the sheer number of performance problems can easily overwhelm any study
group. We make the framework open and extensible, and distill common utilities
that help expert users expand the databases.

3 Bottleneck Discovery

A bottleneck is the part of a system that limits the performance. Achieving
maximum performance can probably be formulated as a gigantic combinatorial
optimization problem. Yet the sheer complexity determines that oftentimes we
have to resort to heuristics for sub-optimal solutions. In practice, bottleneck
discovery requires knowledge about application domain, compiler, software sys-
tem, and architecture, and is traditionally done by a small group of experts. A
mechanism to mine the expert knowledge is necessary to automate the tuning
process.

The mining act is not trivial as the wisdom is often expressed in fuzzy terms.
Formalizing the knowledge takes effort as shown by the following example. MPI
derived data types have been proposed to improve the flexibility and performance
of transferring non-contiguous data between processors. Not all programmers
are fluent with derived data types, and they still compact data explicitly into
a contiguous buffer before communication. This practice results in additional
copying overhead, and can seriously degrade performance. The tuning guideline
from the expert is clear. Simply stated, it asks to get rid of the redundant
data packing by using derived data types. Yet it is not straightforward for a
machine to detect the packing behavior, especially when the packing is done
in a different function than where the communication occurs. Moreover, the
packing itself can be complicated, and involves several loop regions. To identify
the buffer being sent is simple (trivially through MPI tracing), but confirming
the fact that data was being packed is hard. We formalized a scheme that relies
on runtime memory access analysis (intercepting loads/stores to the buffer at
run time), and flow analysis (through static analysis) to discover the behavior.
This example emphasizes the need to integrate tools and compiler for bottleneck
detection.

A bottleneck in our framework is a rule (pattern) defined on a set of met-
rics. The rule is expressed in a mini-language, and most current rules are logic

A Holistic Approach towards Automated Performance Analysis and Tuning 37

expressions. The design goal of the language is to be flexible and expressive
enough to cover most frequent problem patterns. As more knowledge about
bottlenecks is developed, new language features might be added. Rule definitions
are acquired from literature and expert knowledge. The rule database is designed
to be open for expansion and customization.

In our design a performance metric is any quantifiable aspect about or related
to application performance. Examples include the number of pipeline stalls for
a given loop, the number of prefetchable streams, the number of packets sent
from a certain processor, the size of physical memory, and whether loops have
been tiled by the compiler. The bottleneck rule provides a way to compare and
correlate metrics from multiple sources and dimensions, and helps the accurate
diagnosis of the problem. Having a large collection of metrics helps introducing
new rules.

3.1 Metrics from Existing Performance Tools

Each existing performance tool is specialized in collecting certain performance
metrics. These metrics can be used in building meaningful bottleneck rules
through a mechanism our framework provides for metric import.

In our current implementation, the framework is able to collect many metrics
through the IBM high performance computing toolkit (IHPCT) [15]. IHPCT
contains a profiling tool [2], a hardware performance monitor (HPM), a simula-
tion guided memory analyzer (SSIGMA) [5], an MPI profiling and tracing tool,
an OpenMP tracing tool, and a modular I/O tool. Each of these components
evaluates and/or measures certain performance aspect of the application, and
the wealth of performance data collected serve as metrics for bottleneck defini-
tions. For example, HPM alone collects up to hundreds of metrics about various
hardware events.

Metrics from different tools can co-exist, and we also experiment with col-
lecting metrics through TAU [I0] and Scalasca [6]. Table [Il shows some sample
metrics collected by existing tools.

Combining the analysis of multiple tools can be simply achieved by defining
rules that use metrics collected by them. For example, the following rule points
to a potential pipeline stalling problem caused by costly divide operations in a
loop.

Table 1. Example metrics collected by different performance analysis programs

metric name description collected by
PM INST CMPL instruction completed HPM
L1 miss rate L1 miss rate HPM
Avg msg size average massage size MPI profiler
Thread imbalance thread work load imbalance Open MP profiler
#prefetches number of prefetched cache lines SiGMA

mpi latesender Time a receiving process is waiting for a message Scalasca

38 G. Cong et al.

. PM STALL FPU .
#divides > 0 && PM RUN CYC >t && vectorized =0

Here, #divides is the number of divide operations in the loop (collected by
some static analysis module or even keywords from the UNIX grep utility), while
PM STALL FPU and PM RUN CY C are two metrics collected by HPM that
measure the number of cycles spent on stalls due to floating point unit and the
total number of cycles, respectively. In this rule ¢ is a constant threshold.

3.2 Metrics from the Compiler

To be able to accurately pinpoint a performance problem, static analysis is of-
tentimes necessary to understand the structure of the program. It is desirable to
bring compiler analysis into the bottleneck discovery. Most compilers are usually
not concerned with providing services to external tools, and the complexity of
the compiler daunts attempts from outside to utilize its analysis other than com-
piling a program. Under the DARPA HPCS initiative, currently we are working
with the IBM compiler group to expose standard compiler analysis to the tools
and users.

Performance metrics provided by the compiler such as estimate of number
of prefetchable streams, estimate of pipeline stalls, and number of basic blocks
are useful in constructing bottleneck rules. More importantly, since a large class
of performance problems are related to optimizations that are not carried out
by the compiler (although in theory it is capable of), it is immensely help-
ful to get a report from the compiler on optimizations performed on the code.
Without knowing what optimizations have been applied to the hotspots, it is
virtually impossible to provide meaningful diagnostics, especially for problems
in the computation domain, as the target binary code becomes a black box to
us. Take the unroll analysis in our study as an example. Loop unroll and jam is
a well studied compiler technique. Indeed many compilers claim to have compe-
tent unrolling transformations. In practice, however, we found from performance
engineers that in many cases even industrial strength compilers do not do the
best job in unrolling outer loops. The reasons could be that either only in very
high optimization level is outer-loop unrolling triggered (which can be a prob-
lem for programs requiring strict semantics), or the compiler decides that other
forms of transformation are appropriate which preclude unrolling. As we con-
duct postmortem analysis of an application and direct tuning efforts to a few
code regions, we can afford more detailed analysis for better estimating the costs
and benefits of an unrolling vector. Experimental results show that our unroll
analysis produces faster code than some industrial-strength compiler [4]. In this
case, performance bottleneck is the existence of discrepancy between parameters
estimated by our module and those proposed by the compiler. A compiler can
also report reasons that a potential performance-boosting optimization is not
done. Such information provides insight that help further tune an application.

For bottleneck discovery, we utilize analysis results from the compiler are
stored in an XML database. Using this database, metrics and transformations
on a certain code region can be retrieved.

A Holistic Approach towards Automated Performance Analysis and Tuning 39

4 Solution Composition and Implementation

Our framework attempts to propose measures (which we call solutions) to miti-
gate the performance bottlenecks. Candidate solutions mined from expert knowl-
edge are stored in the solution database. Solutions are in generic forms, and need
to be instantiated. For example, a generic solution for the bottleneck where
excessive time is spent on blocking MPI calls is to overlap computation with
communication, while whether and how the overlap can be done are application
dependent. Instantiating a solution involves the following actions. First legality
check is necessary to preserve data dependency. Second, the parameter values
are computed. In overlapping communication and computation for MPI pro-
grams, non-blocking calls and their locations are the parameters. Next, perfor-
mance improvement is estimated through modeling or running the application
patched with the solution. Lastly, code modifications and environment settings
are determined.

Parameter values largely determine the effectiveness of the solutions. One
important aspect of solution determination is to find the optimal parameter
values. Such analysis for CPU related problems is similar to that done by an
optimizing compiler. As time constraint on the tuning process of our framework is
in general not as stringent as that on that compiler, oftentimes we can search for
the optimal parameter values with the help of a performance estimation engine.
For example, for loop unroll as a solution, we generate pseudo instructions for
different unroll vectors and schedule the instructions to run on an universal
machine model [4]. Performance estimation engine counts the number of cycles
spent on the normalized loop body, and the search engine chooses the parameter
with the best execution cycles for the optimal solution.

The effectiveness of solution discovery is closely related to the accuracy of
bottleneck detection. The more detailed a bottleneck description is, the easier
for the system to propose solutions. Consider the following scenario. Suppose
the framework detects a bottleneck pattern where excessive pipeline stalls oc-
curred in a code region. It is hard to propose any meaningful solution without
further information as possible causes are numerous. If it is also detected that
the majority of the stalls are due to data cache misses, the hint is to improve
data locality. If static analysis reveals that irregular accesses occurred to spe-
cific arrays, solution discovery can focus on those arrays. As our framework is
involved with every aspect of the tuning process, the quality of solution can be
improved by accurate bottleneck discovery.

We implement three kinds of solutions: standard transformations through
compilers, modifications to the source code, and suggestions. Compiler support
obviates the need to modify the source code for standard transformations. Our
framework focuses on searching for better parameter values, and delegates the
actual transformation to the compiler. We work with compiler researchers to
develop two different facilities for implementing solutions. One is through com-
piler directives, and the other is through the polyhedral scripting framework [IJ.

40 G. Cong et al.

Directives serve as suggestions to the compiler, and the polyhedral framework
provides a flexible interface for the tool to implement its own desired optimiza-
tion composed from standard transformations. Solution in the form of source
code modification is necessary when there is no compiler support for the trans-
formations, for example, optimizations to MPI communications. In section [we
present examples that employ compiler directives and source code modifications
to implement solutions.

5 Case Study

Currently our framework contains many built-in metrics and rules for bottleneck de-
tection. Most notably all metrics collected by hardware event counters are present,
together with many metrics collected by static analysis and compiler analysis. On
the solution side, the framework is able to automatically tune for several perfor-
mance problems. Here we give an example of using our framework to analyze and
tune an application. Note that expanding the framework to automatically tune the
two applications provide utilities that are reusable in future tunings.

The application we consider is Lattice Boltzmann Magneto-Hydrodynamics
code (LBMHD) [J]. The Lattice Boltzmann method is a mesoscopic descrip-
tion of the transport properties of physical systems using linearized Boltzmann
equations.

Hotspot detection shows that two functions, stream and collision, take most
of the execution time. And it is clear that there are many pipeline stalls, and
resources in the system are not fully utilized. Tuning experts point to a per-
formance problem that is due to two different access orderings on the same
multi-dimension array in stream and collision.

Figure [0l shows the loops of interest in subroutine collision. For multi-
dimensional arrays f, g, feq, and geq, the access order incurred by the j, 1,
k iteration order does not match with their storage order, and creates massive
cache misses (consider the k dimension, for example). There are two ways to
match the array access order and the storage order. The first is to change the
access order by loop-interchange. In collision, however, the loops are not per-
fectly nested. It is impossible to implement loop interchange without violating
the dependency constraints. The remaining option is to change the storage or-
der to match the access order by re-laying out the array. Changing the storage
order does not affect the correctness of the program, and is a viable solution. Of
course, this optimization affects the performance of all accesses to the affected
arrays, a fact that needs consideration for solution implementation.

For arrays f and feq, as the control variables are in the k, i, j order count-
ing from the inner most, the new layout is to store the array such that the k
dimension is stored first, followed by the ¢ dimension, then the j dimension. In
other words, the new storage order is (3,1,2), the 3"¢ dimension first, then the
1t dimension, followed by the 2% dimension. For arrays ¢ and geq, all accesses
have the forth subscript as constant. The new storage order should store the 4"
dimension first. For the k, i, j control variable access order, the storage order is

A Holistic Approach towards Automated Performance Analysis and Tuning 41

do j = jsta, jend
do i = ista, iend

dok=1, 4

vtl = vtl + c(k,l)*f(i,j,k) + c(k+4,1)*f(i,j,k+4)
vt2 = vt2 + c(k,2)*£(i,j,k) + c(k+4,2)*£(i,j,k+4)
Btl = Btl + g(i,j,k,1) + g(i,j,k+4,1)
Bt2 = Bt2 + g(i,j,k,2) + g(i,j,k+4,2)

enddo

do k=1, 8

feq(i,j,k)=vfacx*f(i,j,k)+vtauinv*(templ+trho*.25*vdotc+ &
.5% (trho*vdotc**2- Bdotc**2))

geq(i,j,k,1)= Bfac*g(i,j,k,1)+ Btauinvx.125%(theta*xBtl+ &
2.0*%Bt1*vdotc—- 2.0*vt1*Bdotc)

enddo
enddo

enddo

Fig. 1. Code excerpt of collision

similar to that of f, and feq. The final storage order is (4,3,1,2), that is, the 4"
dimension first, the 3rd dimension second, followed by the 1% and 2"¢ dimen-
sions. To implement the new storage order, we resort to compiler directives. For
example, on IBM platforms, the XL compiler provides the IBM SUBSCRIP-
TORDER directive that accepts a new storage order. For LBMHD, four arrays
have their storage orders changed through the following directive.

IIBM SUBSCRIPTORDER(f(3,1,2), feq(3,1,2),9(4,3,1,2),geq(4,3,1,2))

Changing the storage order of the arrays may create undesirable side effects for
other program constructs. In LBMHD, arrays f, feq, g, and geq are shared by
several routines. In our earlier analysis, we found proper storage orders for these
arrays in collision. However, these orders introduce new problems for stream
(Figure 2)).

The access order in stream to arrays g and geq matches exactly with the
original storage order. Yet to improve the cache performance for collision, the
storage orders are changed. To remedy, we can try changing the access order
of stream to match the new storage order. Changing access order is constraint
by data dependency. Fortunately for stream, loop-interchange can be applied as
follows. The whole nested loop is distributed into two perfectly nested loops.
Each in turn is interchanged. Then the two perfectly nested loops are fused
together. As a result, the outer most loop (do k = 1, 2) is moved to the inner
most, the inner most loops (do i = ista, iend) to the middle, and the loop (do j
= jsta, jend) is moved to the outer most.

42 G. Cong et al.

do k=1, 2
do j = jsta, jend
do i = ista, iend
g(i,j,1,k)= geq(i-1,j,1,k)
enddo
enddo
do j = jsta, jend
do i = ista, iend
g(i,j,2,k)= wi*geq(i,j,2,k)+ w2*geq(i-1,j-1,2,k)
+ w3xgeq(i-2,j-2,2,k)
g(i,j,4,k)= wixgeq(i,j,4,k)+ w2*geq(i+l,j-1,4,k)
+ w3xgeq(i+1,j-2,4,k)

enddo
enddo
enddo

Fig. 2. Code excerpt from stream

Using our bottleneck description language, the following rule is inserted to
the bottleneck database for detecting the mismatch between iteration order and
storage order.

STALL LSU/PM CYC > o and STRIDE1 RATE < 3
and REGULAR RATE(n) > STRIDE1 RATE + ~

STALL LSU and PM CYC are metrics that measure the number of cycles spent
on LSU stalls and the total number of cycles, respectively. STRIDE1 RATE
estimates the number of memory accesses that are stride-1. REGULAR RATE
estimates the number accesses that have regular stride. What this rule says is
that if there is a significant number of cycles spent on LSU unit, and there are
more n-stride accesses than stride-1 access, there is potentially a bottleneck that
may be removed by array transpose and related optimizations. In the rule, «,
B, and v are constants used as thresholds. Different threshold values signify the
different levels of seriousness of the performance problem. The threshold values
may also be tied to the performance gain a user expects from removing the
bottleneck. Static analysis and runtime hardware events collection modules are
responsible for the collection of these metrics.

There is only one solution associated with this bottleneck, as the bottleneck
definition narrows the range of possible solutions. Discovering solution parame-
ters and implementing the solution are still manual at this stage. Yet after the
development of these modules, utilities such as finding the array access order
and the storage order become available to further users, and can simplify their
development of similar modules.

Once the bottleneck rule and solution discussed above are introduced,
our framework can automate the performance tuning for LBMHD. Similar

A Holistic Approach towards Automated Performance Analysis and Tuning 43

performance problems can be detected and mitigated for other applications. Due
to limited space, we refer interested readers to IBM alphaworks [§] for examples
and instructions of using the framework.

In our experiment, the gtranspose solution achieved about 20% improvement
in execution time with a grid size 2048 x 2048 and 50 iterations on a P575+
(1.9 GHz Power5+, 16 CPUs. Memory: 64GB, DDR2) on one processor. Note
that without loop-interchange for stream, the transformation actually degrades
the overall performance by over 5% even though the performance of collision
is improved. Loop-interchange mitigates the adverse impact of the new storage
order on stream. There is still performance degradation of stream after Loop-
interchange. The degradation is due to the new memory access pattern. After
Loop-interchange, the k-loop becomes the inner-most loop. Although the mem-
ory accesses to g and geq are consecutive, the corresponding array dimensions
are of a small range (k goes from 1 to 2). And the next dimension introduces
strided access. In the original code, both the i-loop and j-loop have sequential
accesses to g and geq spanning a region of size (iend — ista) x (jend — jsta).

6 Conclusion and Future Work

In this paper we presented our study of unifying performance tools, compiler,
and expert knowledge for high productivity performance tuning. Our framework
facilitates a holistic approach that detects bottlenecks and proposes solutions.
Performance data collected by existing performance tools can be used as metrics.
The analysis of multiple tools can be correlated and combined through bottle-
neck rules. Compiler analysis and optimization play a critical role in our frame-
work. We demonstrated the advantages of performance optimization through
our framework through tuning two applications. The tuning process is highly
automated, and the performance improvement is significant in both cases.

As we observed, the effectiveness of the framework depends on the number
and quality of bottleneck rules and solutions in our database. In future work,
we plan to populate the database with more rules and solutions. We also expect
to improve the services and utilities the framework provides for expansion and
customization.

References

1. Bastoul, C.: Code generation in the polyhedral model is easier than you think.
In: Proc. 13th international conference on parallel architecture and compilation
techniques, Antibes Juan-les-Pins, France, September 2004, pp. 7-16 (2004)

2. Bhatele, A., Cong, G.: A selective profiling tool: towards automatic performance
tuning. In: Proc. 3rd Workshop on System Management Techniques, Processes and
Services (SMTPS 2007), Long beach, California (March 2007)

3. Chen, W., Bringmann, R., Mahlke, S.; et al.: Using profile information to assist
advanced compiler optimization and scheduling. In: Banerjee, U., Gelernter, D.,
Nicolau, A., Padua, D.A. (eds.) LCPC 1992. LNCS, vol. 757, pp. 31-48. Springer,
Heidelberg (1993)

44

10.

11.

12.

13.

14.

15.

16.

G. Cong et al.

Cong, G., Seelam, S.; et al.: Towards next-generation performance optimization
tools: A case study. In: Proc. 1st Workshop on Tools Infrastructures and Method-
ologies for the Evaluation of Research Systems, Austin, TX (March 2007)

. DeRose, L., Ekanadham, K., Hollingsworth, J.K., Sbaraglia, S.: Sigma: a simulator

infrastructure to guide memory analysis. In: Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, pp. 1-13 (2002)

. Geimer, M., Wolf, F., Wylie, B.J.N., Abraham, E., Becker, D., Mohr, B.: The

SCALASCA performance toolset architecture. In: Proc. Int’l Workshop on Scalable
Tools for High-End Computing (STHEC), Kos, Greece (2008)

. High productivity computer systems (2005), http://highproductivity.org
. High productivity computing systems toolkit. IBM alphaworks,

http://www.alphaworks.ibm.com/tech/hpcst

. MacNab, A., Vahala, G., Pavlo, P., Vahala, L., Soe, M.: Lattice Boltzmann Model

for Dissipative Incompressible MHD. In: 28th EPS Conference on Contr. Fusion
and Plasma Phys., vol. 25A, pp. 853-856 (2001)

Malony, A.D., Shende, S., Bell, R., Li, K., Li, L., Trebon, N.: Advances in the tau
performance system, pp. 129-144 (2004)

Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Kar-
avanic, K.L., Kunchithapadam, K., Newhall, T.: The Paradyn Parallel Performance
Measurement Tool. IEEE Computer 28, 37-46 (1995)

Mohr, B., Wolf, F.: KOJAK — A tool set for automatic performance analysis of
parallel programs. In: Kosch, H., Boszorményi, L., Hellwagner, H. (eds.) Euro-Par
2003. LNCS, vol. 2790, pp. 1301-1304. Springer, Heidelberg (2003)

Pillet, V., Labarta, J., Cortes, T., Girona, S.: PARAVER: A tool to visualise and
analyze parallel code. In: Proc of WoTUG-18: Transputer and occam Develop-
ments, vol. 44, pp. 17-31. IOS Press, Amsterdam (1995)

Vuduc, R., Demmel, J., Yelick, K.: OSKI: A library of automatically tuned sparse
matrix kernels. In: Proceedings of SciDAC 2005, Journal of Physics: Conference
Series (2005)

Wen, H., Sbaraglia, S., Seelam, S., Chung, I., Cong, G., Klepacki, D.: A productiv-
ity centered tools framework for application performance tuning. In: QEST 2007:
Proc. of the Fourth International Conference on the Quantitative Evaluation of
Systems (QEST 2007), Washington, DC, USA, 2007, pp. 273-274. IEEE Com-
puter Society, Los Alamitos (2007)

Whaley, R., Dongarra, J.: Automatically tuned linear algebra software (ATLAS).
In: Proc. Supercomputing 1998, Orlando, FL (November 1998),
www.netlib.org/utk/people/JackDongarra/PAPERS/atlas-sc98.ps

http://highproductivity.org
http://www.alphaworks.ibm.com/tech/hpcst
www.netlib.org/utk/people/JackDongarra/PAPERS/atlas-sc98.ps

	A Holistic Approach towards Automated Performance Analysis and Tuning
	Introduction
	Performance Optimization Strategy
	Bottleneck Discovery
	Metrics from Existing Performance Tools
	Metrics from the Compiler

	Solution Composition and Implementation
	Case Study
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

