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1 Depto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I (UJI),
12.071–Castellón, Spain

{mmarques, gquintan, quintana}@icc.uji.es
2 Department of Computer Sciences, The University of Texas at Austin,

Austin, TX 78712
rvdg@cs.utexas.edu

Abstract. We target the development of high-performance algorithms
for dense matrix operations where data resides on disk and has to be
explicitly moved in and out of the main memory. We provide strong ev-
idence that, even for a complex operation like the QR factorization, the
use of a run-time system creates a separation of concerns between the
matrix computations and I/O operations with the result that no signif-
icant changes need to be introduced to existing in-core algorithms. The
library developer can thus focus on the design of algorithms-by-blocks,
addressing disk memory as just another level of the memory hierarchy.
Experimental results for the out-of-core computation of the QR factor-
ization on a multi-core processor reveal the potential of this approach.

Keywords: Dense linear algebra, out-of-core computation, QR factor-
ization, multi-core processors, high performance.

1 Introduction

Practical efforts to solve very large dense linear systems employ message-passing
libraries on distributed-memory systems, extending the memory hierarchy to
include secondary memory; see, e.g., [1,2,3,4]. However, the constant evolution of
computer architectures and, more recently, the uprise of general-purpose multi-
core processors and hardware accelerators (Cell B.E., GPUs, etc.) is changing
the scale of what is considered a large problem.

In a previous paper [5] we employed a simple operation like the Cholesky
factorization to introduce a high-level approach for computing out-of-core (OOC)
dense matrix operations on multi-core processors. We showed there that a matrix
with 100,000 rows and columns can be factorized in less than one hour using an
eight-core processor. (This problem would have been solved using a distributed-
memory platform just a couple of years ago.) Key to our approach is a run-time
system which deals with I/O from/to disk, implements a software cache, and
overlaps I/O with computation. The most remarkable property, however, is that
no significant change is needed to the in-core libflame library code [6].
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The major contribution of this paper is to provide much stronger and prac-
tical evidence of the validity of our approach, analyzing the programmability
and performance issues in detail using a more complex operation, the QR fac-
torization. We will demonstrate that the run-time completely hides secondary
memory to the library developer, who can focus on developing and parallelizing
algorithms-by-blocks (also called tiled algorithms; see, e.g., [4]), with a notable
increase in the programmer’s productivity.

Our results also show that, provided the user is willing to wait a few hours
for the answer, the approach may become a highly cost-effective solution for
most dense matrix operations, making it possible that projects with moder-
ate budgets address problems of moderate scale (dimensions of O(10, 000 −
100, 000)) using multi-core processors. Examples of problems that require the
solution of large dense linear systems or linear least-squares problems of this
dimension include the estimation of Earth’s gravitational field, boundary ele-
ment formulations in electromagnetism and acoustics, and molecular dynamics
simulations [7,8,9,10,11].

The rest of the paper is structured as follows. In Section 2 we describe the
tiled left-looking algorithm for computing an OOC QR factorization proposed
in [12]. Algorithms for this operation are presented using the FLAME nota-
tion there, and the multi-threaded parallelization of the basic building kernels
is also analyzed in that section. The traditional OOC implementation of the
tiled QR factorization and the new run-time are described in Section 3. Finally,
experimental results on a multi-core processor with two Intel Xeon QuadCore
processors are reported in Section 4, and concluding remarks follow in Section 5.

2 A Tiled Algorithm for the QR Factorization

The QR factorization of a matrix A ∈ R
m×n decomposes this matrix into the

product
A = QR,

where Q ∈ R
m×m is orthogonal and R ∈ R

m×n is upper triangular.
Traditional in-core algorithms for the QR factorization employ Householder

reflectors [13] to annihilate the subdiagonal elements of the matrix, processing
one column per iteration (from left to right), and effectively reducing A to the
upper triangular factor R. In practice, the elements of R overwrite the corre-
sponding entries of A and Q is not formed explicitly; instead, the reflectors
are stored in compact form using the strictly lower triangle of the matrix (plus
some negligible work space). Blocked algorithms build upon this procedure to
improve data locality: at each iteration, the current panel (or slab) of columns
is factored, and the columns to its right are updated using efficient level-3 Basic
Linear Algebra Subprograms (BLAS) [14].

2.1 The Tiled Left-Looking Algorithm

While right-looking blocked algorithms which proceed by slabs in general yield
high performance for in-core operations, tiled left-looking algorithms are usually
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Algorithm: [A] := QR B(A)

Partition A→ (
AL AR

)

where AL is 0 tiles wide
while n(AL) < n(A) do

Repartition(
AL AR

)→ (
A0 A1 A2

)

where A1 is 1 tile wide

A1 := QR B1(A0, A1)

Continue with(
AL AR

)← (
A0 A1 A2

)

endwhile

Algorithm: [B] := QR B1(A,B)

Partition A→
(

ATL ATR

ABL ABR

)
, B →

(
BT

BB

)

where ATL has 0× 0 tiles,
BT is 0 tiles high

while n(ATL) < n(A) do
Repartition
(

ATL ATR

ABL ABR

)
→

⎛

⎝
A00 A01 A02

A10 A11 A12

A20 A21 A22

⎞

⎠,

(
BT

BB

)
→

⎛

⎝
B0

B1

B2

⎞

⎠

where A11 and B1 are tiles

B1 := Apply Q (A11, B1)

[B1, B2] := QR B2(A11, B1, A21, B2)

B1 := QR (B1)

[B1, B2] := QR B3(B1, B2)

Continue with
(

ATL ATR

ABL ABR

)
←

⎛

⎝
A00 A01 A02

A10 A11 A12

A20 A21 A22

⎞

⎠,

(
BT

BB

)
←

⎛

⎝
B0

B1

B2

⎞

⎠

endwhile

Fig. 1. Tiled algorithms for computing the QR factorization

preferred for OOC computations due to their higher scalability and reduced
I/O. We next describe the tiled left-looking algorithm for the QR factorization
introduced in [12].

Consider a partitioning of the matrix A ∈ R
m×n into square tiles of size t,

A → (Aij) ∈ R
t×t. (For simplicity, we assume that both the row and column

dimensions of the matrix are integer multiples of t.) Figures 1 and 2 show the tiled
algorithm QR B for computing the QR factorization of this matrix using the
FLAME notation [15]. There m(X)/n(X) stand for the number of row/column
tiles of a matrix X . We believe the rest of the notation is intuitive.

FLAME also comprises a set of high-level applications programming interfaces
(APIs) which allow to easily code algorithms in FLAME notation [15]. Using
the Spark web site (http://www.cs.utexas.edu/users/flame) C codes for the
algorithms in Figures 1 and 2 can be obtained in a matter of minutes.

http://www.cs.utexas.edu/users/flame
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Algorithm: [C, D] := QR B2(A, B, C, D)

Partition C →
(

CT

CB

)
, D →

(
DT

DB

)

where CT and DT are 0
tiles high

while m(CT ) < m(C) do
Repartition
(

CT

CB

)
→

⎛

⎝
C0

C1

C2

⎞

⎠ ,

(
DT

DB

)
→

⎛

⎝
D0

D1

D2

⎞

⎠

where C1 and D1 are tiles

(
B
D1

)
:= Apply Qtd

((
A
C1

)
,

(
B
D1

))

Continue with
(

CT

CB

)
←

⎛

⎝
C0

C1

C2

⎞

⎠ ,

(
DT

DB

)
←

⎛

⎝
D0

D1

D2

⎞

⎠

endwhile

Algorithm: [A, C] :=
QR B3(A,C)

Partition C →
(

CT

CB

)

where CT is 0 tiles high
while m(CT ) < m(C) do

Repartition
(

CT

CB

)
→

⎛

⎝
C0

C1

C2

⎞

⎠

where C1 is a tile

(
A
C1

)
:= QRtd

((
A
C1

))

Continue with
(

CT

CB

)
←

⎛

⎝
C0

C1

C2

⎞

⎠

endwhile

Fig. 2. Tiled algorithms for computing the QR factorization (continued)

2.2 Sequential Basic Building Kernels

Four basic building kernels (bk) appear highlighted in the previous algorithms:
the QR factorization of a full dense matrix, the application of orthogonal trans-
formations resulting from it, the QR factorization of a 2×1 blocked matrix with
the top submatrix being upper triangular, and the application of the correspond-
ing transformations to a 2 × 1 blocked matrix:

bk1. A := QR(A),

bk2. B := Apply Q(Q, B),

bk3.

(
R
C

)
:= QRtd

((
R
C

))
, and

bk4.

(
B
D

)
:= Apply Qtd

(
Q,

(
B
D

))
,

respectively. We note here that in the invocation of bk2 and bk4, Q is replaced
by the matrix which contains the appropriate orthogonal transformations (stored
in compact form in the strictly lower triangle).

The building kernels bk1 (QR) and bk2 (Apply Q) are well-known dense
linear algebra operations, for which sequential efficient implementations exist as
part of libflame and LAPACK legacy code (routines geqrf and ormqr) [16].

The key that makes the discussed tiled QR algorithm practical is the use of
structure-aware implementations of bk3 (QRtd) and bk4 (Apply Qtd) that
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Algorithm:

[(
R
C

)]
:= QRtd

((
R
C

))

Partition R→
(

RTL RTR

RBL RBR

)
, C → (

CL CR

)

where RTL is 0× 0, CL has 0 columns

while m(RTL) < m(R) do
Determine block size b
Repartition

(
RTL RTR

RBL RBR

)
→

⎛

⎝
R00 R01 R02

R10 R11 R12

R20 R21 R22

⎞

⎠,
(

CL CR

)→ (
C0 C1 C2

)

where R11 is b× b , C1 has b columns

(
R11

C1

)
:= QR

((
R11

C1

))

(
R12

C2

)
:= Apply Q

((
R11

C1

)
,

(
R12

C2

))

Continue with
(

RTL RTR

RBL RBR

)
←

⎛

⎝
R00 R01 R02

R10 R11 R12

R20 R21 R22

⎞

⎠,
(

CL CR

)← (
C0 C1 C2

)

endwhile

Fig. 3. Blocked algorithm for the building block bk3

exploit the upper triangular form of the top submatrix. Figure 3 shows how to
do so for bk3. Provided b � t, the procedure there requires 2t3 floating-point
arithmetic operations (flops), which is considerably lower than the 8t3/3 flops
required to compute the factorization if the structure of R is not considered and

a general QR factorization of
(

R
C

)
was computed. The procedure for bk4 is

shown in Figure 4, reducing the cost from 8t3 for the general procedure to 4t3

flops for the structure-aware one (provided b � t). For details, see [12].

2.3 Multi-threaded Basic Building Kernels

For multi-core processors, parallel implementations of the kernels bk1 and bk2
can be obtained by just linking the appropriate libflame/LAPACK routines
with a multi-threaded implementation of BLAS. The result is a code that will
extract all its parallelism from the invocations to BLAS from within the routines.
Alternatively, one can also use multi-threaded implementations of geqrf and
ormqr that are part of MKL for these two building kernels, or the parallel data-
driven algorithm with dynamic scheduling described in [15].

The parallelization of the structure-aware building kernels bk3 and bk4 is
more challenging. Of course, one can still link the sequential codes with a
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Algorithm:

[(
B
D

)]
:= Apply Qtd

((
R
C

)
,

(
B
D

))

Partition R→
(

RTL RTR

RBL RBR

)
, B →

(
BT

BB

)
, C → (

CL CR

)

where RTL is 0× 0, BT has 0 rows CL has 0 columns,

while m(RTL) < m(R) do
Determine block size b
Repartition

(
RTL RTR

RBL RBR

)
→

⎛

⎝
R00 R01 R02

R10 R11 R12

R20 R21 R22

⎞

⎠,

(
BT

BB

)
→

⎛

⎝
B0

B1

B2

⎞

⎠ ,

(
CL CR

)→ (
C0 C1 C2

)

where R11 is b× b, B1 has b rows, C1 has b columns

(
B1

D

)
:= Apply Q

((
R11

C1

)
,

(
B1

D

))

Continue with
(

RTL RTR

RBL RBR

)
←

⎛

⎝
R00 R01 R02

R10 R11 R12

R20 R21 R22

⎞

⎠,

(
BT

BB

)
←

⎛

⎝
B0

B1

B2

⎞

⎠,

(
CL CR

)← (
C0 C1 C2

)

endwhile

Fig. 4. Blocked algorithm for the building block bk4

multi-threaded implementation of BLAS, yielding a parallel version of the codes
that extracts all parallelism from within the calls to BLAS. However, given that
b is small, low performance can be expected from this. We will refer to this first
variant as intra-tile column parallel.

On the other hand, the application of transformations only occurs from the
left, making the updates independent by slabs of columns. Thus, a highly parallel
multi-thread implementation can be obtained by splitting the columns of the
matrix that need to be updated into several slabs (as many as threads are being
used) and then computing the update concurrently. We will refer to this second
variant as column parallel.

3 OOC Algorithms for the QR Factorization

3.1 A Traditional OOC Implementation

Developers of OOC codes usually decide first how many tiles will be kept in-core,
then carefully design their algorithms to reduce the number of data movements
between main memory and disk, and finally insert the appropriate invocations
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to I/O calls in the codes. In general, the tile size t is set to occupy a fraction
of the main memory as large as possible: provided t is large enough, the I/O
overhead necessary to move the tiles involved in a given operation is negligible
compared with the cost of the computations (O(t2) accesses to disk vs. O(t3)
flops). OOC algorithms that keep three to four tiles in-core are common for many
dense linear algebra operations. To attain higher performance, computation and
I/O have to be overlapped, and space is needed to store data in-core which will
be involved in future computations (double-buffering). However, overlapping for
performance also complicates programming, as asynchronous I/O routines need
to be employed.

We explain next how to unburden the library developer from explicitly man-
aging I/O and overlapping it with the computation.

3.2 A Run-Time System for OOC Dense Linear Algebra Operations

Our approach employs a run-time system which executes the codes correspond-
ing to the algorithms for the tiled QR factorization (see Figures 1–4) in two
stages. In the first stage, the run-time does a symbolic execution of the code
creating a list of pending tasks: every time an invocation to a routine that corre-
sponds to one of the building kernels is detected, a new annotation is introduced
in the list which identifies the task to be computed and the operands (tiles)
which are involved. Upon completion, tasks appear in this list in the same order
as they are encountered in the codes.

During the second stage, the real I/O and computations occur. Here a scout
thread and a worker tread collaborate to perform I/O and computations. The
scout thread extracts the next task from the pending list, bringing in-core the
tiles involved by the task. To hide memory latency, this thread uses a software
cache with capacity to store a few tiles and the corresponding replacement poli-
cies/mechanisms. Once data is in-core for a given operation, the scout thread
moves the task to the list of ready tasks, which only contains operations with all
data in main memory.

The worker thread extracts the tasks from the list of ready tasks in order, one
task at a time, and executes the corresponding operation using as many threads
as cores are available in the system. Thus, in our current approach, parallelism
is only exploited within the computations of a single task. However, in case there
are two or more tasks in the ready list with all its input data updated (i.e., no
previous task in the list will overwrite them), we could have also split the set of
computational threads to execute them in parallel.

We have previously used the idea of a run-time/two-stage execution, with an
initial symbolic analysis of the code, to extract more parallelism and improve
the scalability in multi-core systems; see, e.g., [15]. The purpose is different here.
In particular, we employ the run-time to overlap I/O done by the scout thread
and computation performed by the worker thread without using asynchronous
I/O routines. The fact that the list of tasks (or part of it) is known in advance,
is equivalent in practice to having a perfect prefetch engine as the tiles that will
be needed in future operations (tasks) are known a priori.
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To ensure the correct operation of the worker thread, the replacement policy
for the software cache only selects tiles which are not involved in any operation
in the list of ready tasks. If there are no candidates which satisfy this criterion,
the scout thread blocks till the execution of new tasks is completed.

The bottom line is that proceeding in this manner, the scout thread completely
hides I/O from the library developer so that no changes are necessary in the
in-core codes. Also, both threads conspire to hide asynchronous I/O from the
developer.

The concurrent execution of the scout and the worker thread implies a first
level of parallelism in the system. The use of multiple threads to perform the ac-
tual computations on the data reflects an additional, nested level of parallelism.

4 Experimental Results

The target architecture for the experiments is a workstation with two Intel Xeon
QuadCore E5405 processors (8 cores) at 2.0 GHz with 8 GBytes of DDR2 RAM
(peak performance is 128 billions of flops per second or GFLOPS). The Intel 5400
chipset provides an I/O interface with a peak bandwidth of 1.5 Gbits/second.
The disk is a SATA-I with a total capacity of 160 Gbytes. All experiments were
performed using MKL 10.0.1 and single precision.

We first evaluate the performance of the multi-threaded in-core building ker-
nels, operating on matrices (tiles) of size t×t (bk1 and bk2) and 2t×t (bk3 and
bk4). Table 1 reports the number of invocations to each building kernel during
the factorization of a square matrix of order n using the algorithms for the tiled
(left-looking) QR factorization in Figures 1 and 2, with tile size t and k = n/t.
There we also report the performance of the basic building kernels, measured in
terms of GFLOPS, using the counts of 4t3/3, 2n3, 2t3 and 4t3 flops1 for bk1,
bk2, bk3 and bk4, respectively. In this analysis we set t=5,120 which, in a sepa-
rate study, was found to be an fair value for the tiled OOC algorithm. Clearly, the
performance of bk4 will determine the efficiency of the overall OOC algorithm
and, therefore, we tried to optimize this building kernel carefully. In particular,
the table shows the results of two parallelization strategies for bk4: one with all
parallelism being extracted from calls to multi-threaded BLAS and an alterna-
tive one with a parallelization by blocks of columns (see subsection 2.3). In the
experiments we also found that the block size b=64 (see Figures 3 and 4) was
optimal in most cases.

Our second experiment evaluates the performance of several in-core and OOC
routines for the QR factorization:

In-core MKL: The (in-core) multi-threaded implementation of the QR factor-
ization in MKL 10.0.1.

In-core LAPACK: The (in-core) LAPACK legacy code linked with the multi-
threaded BLAS in MKL 10.0.1.

1 We emphasize that we are only counting “useful computations” and do not count
additional operations that are artificially introduced in order to expose better par-
allelism and/or improve the use of matrix-multiplications.
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Table 1. Number of invocations and performance of different implementations of the
multi-threaded in-core building kernels operating on tiles of size t=5,120

Building kernel #invocations Performance
GFLOPS Parallelization strategy

bk1 k 45 Multi-threaded BLAS

bk2 k3/2 67 Multi-threaded BLAS

bk3 k2/2 39 Multi-threaded BLAS

bk4 k3/3 53 Multi-threaded BLAS
65 Column parallel

OOC explicit+intra-tile column parallel: OOC implementation with ex-
plicit invocations to I/O routines (see subsection 3.1). The tile size was set in
this routine to t=5,120. Although, in theory, using a large tile size makes the
cost of moving data between disk and main memory (O(t2) disk accesses)
negligible compared with the computational cost (O(t3) flops), in our exper-
imentation we found out a large drop in the disk transfer rate for tiles of
dimension larger than 5, 120× 5, 120. (We experienced similar behaviour for
several other current desktop systems equipped with different disks.) In this
routine, parallelism is extracted implicitly by linking to a multi-threaded
BLAS (see subsection 2.3).

OOC cache+column parallel: OOC implementation with a software cache
in place to reduce the number of I/O transfers (see Section 3.2). The cache
occupies 6 GBytes in RAM, and is organized as a k-way set associative with
t=5,120 and k = n/t. LRU was implemented as the replacement policy. Par-
allelism is extracted explicitly by implementing column parallel variants for
the building kernels bk3 and bk4 (see subsection 2.3). I/O is synchronous.

OOC cache+I/O overlap+column parallel: OOC implementation that in-
cludes all mechanisms of the previous routine plus overlap of I/O and
computation (see Section 3.2).

Figure 5 reports the performance of these routines measured in terms of GFLOPS,
with the usual count of 4n3/3 flops for the QR factorization of a square matrix of
order n. (Experiments with nonsquare matrices offered similar results. We also
note here that the tiled QR factorization performs a larger number of flops than
the in-core factorization routines in MKL and LAPACK; see [12] for details.)

The results in the figure show a practical peak performance for the in-core
QR factorization that is slightly over 74 GFLOPS. Using routine OOC column
parallel+cache+I/O overlap, the tiled QR factorization which operates on
OOC data yields a performance that is around 65 GFLOPS and, therefore, close
to that of the in-core algorithm. As expected, the performance of the tiled OOC
algorithm matches that of the building kernel bk4, in a practical demonstration
that the disk latency is mostly hidden. The performance results reveal that
the GFLOPS rate for the OOC algorithm is maintained as the problem size is
increased, thus confirming the scalability of the solution.
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Fig. 5. Performance of the QR factorization codes on a multi-core processor

To asses the benefits contributed by the use of the software cache, Table 2
shows the number of tiles read from or written to disk for the OOC routine
with explicit I/O calls and the ones that employ a software cache. The results
demonstrate that the software cache greatly reduces the number of tiles that are
transferred between the disk and RAM.

Table 3 reports the execution time required to compute the tiled QR factor-
ization for routine OOC column parallel+cache+I/O overlap as well as
the amount of memory that is needed to store the full dense matrix. The results
show that what would have been considered a very large problem only a few
years ago was solved in less than 5 hours. Solving a linear least squares prob-
lem or a linear system (with a few right-hand sides) once the orthogonal matrix
and the triangular factor are available is computationally much less expensive

Table 2. Reduction in the number of disk accesses (in terms of number of tiles read-
s/written) attained by the use of a software cache

Matrix size (square) OOC explicit OOC cache
#reads #writes #reads #writes

51,200 1,045 715 237 100

92,160 5,985 4,047 2,170 324

Table 3. Execution time (in hours, minutes, and seconds) of the tiled QR factorization
code using the OOC run-time and amount of memory needed to hold the matrix

Matrix size (square) Time MBytes

51,200 54min 20.9sec 10,000

92,160 4h 43min 12.3sec 40,000
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than the factorization procedure and does not represent a challenge from the
viewpoint of an OOC implementation.

5 Concluding Remarks

In this paper we have described and evaluated a run-time system which deals
with I/O, overlaps computation and data movement from disk, and implements a
software cache and the associated mechanisms. The case study is the QR factor-
ization, a complex operation for which tiled in-core left-looking codes exist. The
results obtained by combining these codes with the run-time system show that
the extension of the memory hierarchy to include the disk can be made transpar-
ent to the library developer at the expense of little overhead. Our approach thus
greatly increases the programmer’s productivity without significantly hurting
performance.

This work also demonstrates that multi-core processors are a cost-effective
approach for the solution of many dense linear algebra operations of moderate
scale. The implicit message is that, for these problems, it is not necessary to
utilize expensive distributed-memory architectures and design complex message-
passing algorithms, provided one is willing to wait longer.
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