
H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 924–935, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Parallelization of a Video Segmentation Algorithm on
CUDA–Enabled Graphics Processing Units

Juan Gómez-Luna1, José María González-Linares2, José Ignacio Benavides1,
and Nicolás Guil2

1 Computer Architecture and Electronics Department, University of Córdoba,
Campus de Rabanales, 14071 Córdoba, Spain

{el1goluj,el1bebej}@uco.es
2 Computer Architecture Department, University of Málaga, Campus de Teatinos,

28071 Málaga, Spain
{gonzalez,nico}@ac.uma.es

Abstract. Nowadays, Graphics Processing Units (GPU) are emerging as SIMD
coprocessors for general purpose computations, specially after the launch of
nVIDIA CUDA. Since then, some libraries have been implemented for matrix
computation and image processing. However, in real video applications some
stages need irregular data distributions and the parallelism is not so inherent.
This paper presents the parallelization of a video segmentation application on
GPU hardware, which implements an algorithm for abrupt and gradual transi-
tions detection. A critical part of the algorithm requires highly intensive compu-
tation for video frames features calculation. Results on three CUDA-enabled
GPUs are encouraging, because of the significant speedup achieved. They are
also compared with an OpenMP version of the algorithm, running on two
platforms with multiples cores.

Keywords. Video Segmentation, CUDA, Canny, Generalized Hough Transform.

1 Introduction

A high number of video analysis applications, such as storyboard generation, video
comparison, scene detection, video summarization, etc., apply temporal video seg-
mentation as a previous step for further processing. Temporal video segmentation is a
video processing technique, which is able to identify the shots appearing in a video,
i.e., the sequences of frames captured from a single camera operation. Thus, a thor-
ough study of video segmentation seems very convenient, in order to exploit their
parallelism.

Two different types of transitions link the shots in a video. On the one hand, abrupt
transitions or cuts occur when the change from one shot to the next one is performed
in just one frame. On the other hand, gradual transitions involve several frames. Shot
detection is performed through shot transition detection algorithms. This work focuses
concretely on the on-line abrupt and gradual transitions detection algorithm presented
in [1] and [2], which has achieved a high score in transitions detection.

 Parallelization of a Video Segmentation Algorithm on CUDA–Enabled GPU 925

The aforementioned applications are used in the digital video industry where, typi-
cally, cheap hardware computation platforms are available. Nowadays, these
platforms may have a multi-core microprocessor, which is the trend in recent years.
Applications should be parallelized in order to exploit the Thread Level Parallelism
(TLP) inherent in these two- or four-core microprocessors. However, using the
Graphics Processing Unit (GPU) as a SIMD coprocessor can also be considered.

Since the launch of nVIDIA CUDA [3], programming a GPU for general purpose
computations is pretty much easier than before. The parallelizing effort with CUDA is
equivalent to that with OpenMP [4] or any other application programming interface
(API). Moreover, some libraries, such as OpenVidia [5] and GPUCV [6], have been
implemented for matrix and image computations. However, the algorithm, scope of
this work, is a typical video application, where some stages need irregular data distri-
butions and the parallelism is not so inherent.

This paper presents the parallelization of the abrupt and gradual transitions detec-
tion algorithm, described in Section 2, on three CUDA–enabled GPUs: nVIDIA Ge-
Force 8800 GTS, nVIDIA GeForce 9800 GX2, both with CUDA compute capability
1.1, and the recently released nVIDIA GeForce GTX 280, with CUDA compute ca-
pability 1.3. The performance of these implementations is compared with a data de-
composition using OpenMP on a four-core Intel Core2Quad Q6600 2.40GHz and an
eight-core Intel Xeon X5355 2.66 GHz multi-processor, in Section 5. Section 3 intro-
duces CUDA and describes the decomposition of the algorithm in kernels. Section 4
explains the implementation of the most significant kernels.

2 Temporal Video Segmentation

This section presents a unified scheme for on-line video segmentation based on lumi-
nance and contour information from video sequences [1], [2]. It is able to detect
abrupt as well as gradual shot transitions with high accuracy using neural networks
for classification purposes. The process is summarized in Fig. 1.

Fig. 1. Flow diagram to perform abrupt and gradual shot transitions detection. Shadowed stages
indicate computing phases within the algorithm.

Two metrics are used to compare video frames, as it is explained below. The
MPEG stream is decompressed and divided into frames, from which contour and
luminance information is obtained:

− Contour information is extracted using the Canny edge detection algorithm [7].
Next, a Generalized Hough Transform (GHT, [8]) searches for couples of edge
points whose gradient directions (θ) differ a certain angle (typically, two angles of
90º and 135º are used). When a pairing is found, a value α is computed. Then, the

926 J. Gómez-Luna et al.

(α, θ) element of a 2D histogram, called orientation table (OT), is updated (OT(α,θ)
= OT(α,θ) + 1). The OT of an image can be used to detect if a given template, rep-
resented by its own OT, is present in the image. This algorithm uses a frame of the
video as a template for the next frame. Thus, OTs of two frames are compared us-
ing a modified normalized 2D cross correlation [9] to obtain a similarity value
(CBM, Contour Based Metric).

− A luminance histogram is computed for every frame. The histograms of two
frames can be compared using a modified normalized 1D cross correlation function
that obtains a similarity value (LBM, Luminance Based Metric).

Abrupt shot transitions are computed by comparing consecutive frames. The result-
ing similarity values of CBM and LBM are filtered by a third order median filter to
minimize the effect of flashes and motion in the sequence. After that, a non-
deterministic classifier identifies the abrupt transitions. The classifier is based on a
multi-layer perceptron neural network with one hidden layer, 6 elements in the input
layer, 10 neurons in the hidden layer, and 2 output elements.

Once abrupt transitions detection has been carried out, gradual shot transitions de-
tection is performed by comparing frames at distance n (typically n=15). Candidate
gradual transitions are identified by means of LBM over several frames and a new
multi-layer perceptron neural network. This has 101 elements in the input layer, 80
neurons in the hidden layer, and 2 output elements.

Once candidate gradual transitions have been detected, it is required to discard
false detections caused by camera operation. In order to do this, the algorithm imple-
ments a motion estimation procedure based on the GHT, which detects camera ef-
fects, such as zooms or displacements. Since displacements are the most usual effects,
a Displacement Table DT is calculated for each frame. The displacement between a
frame and the next ones in a window w (typically w=10) can be determined compar-
ing the DT of each.

3 Implementing with CUDA

Since this algorithm is highly compute-intensive, its execution on a single CPU can
take more than three seconds per frame. This value is too far from real-time, which
would be a very desirable target for the applications it can be used. The scope of the
algorithm is on-line video segmentation. Hence, parallelization should be applied to
the computation of each frame. Some parts of this computation are really complex,
such as the contour information extraction and the generation of the orientation table
(OT). Moreover, some of them exhibit an inherent parallelism, because computation
over all pixels of the image is regular. Thus, these parts present typical features of
SIMD processing, what makes them suitable for parallelization on GPU. However,
the parallelism is not so clear in other parts as explained next. Obtaining a perform-
ance improvement of these parts is the major challenge of this work.

3.1 CUDA Programming Interface

CUDA consists of a set of C language library functions and a compiler (nvcc), which
generates the executable code for the GPU. CUDA offers a huge number of threads

 Parallelization of a Video Segmentation Algorithm on CUDA–Enabled GPU 927

running in parallel. Some elements should be described, because of their importance
while programming:

− A block is a group of threads, which is mapped to a single multi-processor. All
threads of a block can access 16 Kbytes of shared memory. The resources of the
multi-processor are equally divided among the threads. The data is also divided
among the threads in a SIMD fashion.

− The threads of a block run logically in parallel, but not always physically due to the
limited hardware resources. A collection of threads running concurrently at the
same time is called a warp. The size of a warp is 32.

− Every thread executes the same code called kernel. The number of blocks and the
number of threads in a block should be defined for each kernel.

From the hardware point of view, threads execute on SIMD single multi-
processors. The number of multi-processors depends on GPU model, varying from 1
in the first CUDA-capable models to 30 in the GeForce GTX 280.

All the threads of a kernel access the global memory or device memory. Data is
transferred to global memory from the memory of the host, that is, the CPU. More-
over, each multi-processor contains a number of registers, which are split among the
threads of a block.

The maximum efficiency of a kernel can be obtained when the occupancy of the
multi-processors is as high as possible and the memory hierarchy is properly used.

On the one hand, in order to determine the occupancy, the code is compiled using
the nvcc and a special flag that outputs the amount of memory and the registers con-
sumed by the kernel. Analyzing these values permits to determine the number of
threads of a block for maximum efficiency. Usually, a block should contain 128-256
threads to minimize execution time. The number of blocks is set according to entry
data size. On the other hand, global memory is a high-latency memory. Its bandwidth
is used most efficiently when simultaneous memory accesses by threads can be coa-
lesced into a single memory transaction. Coalescing occurs when the threads access
words in sequence, i.e., the kth thread access the kth word, and the words lie in the
same segment of 32, 64 or 128 bytes. Furthermore, a proper use of the low-latency
shared memory can also improve performance. Threads of a block access shared
memory simultaneously when the data resides in different memory banks. If it does
not, simultaneous accesses are serialized.

3.2 Decomposition of the Algorithm in Kernels

This implementation with CUDA is focused on obtaining the similarity values of
CBM and LBM, which are the most time-consuming stages of the algorithm. The
execution time of the classifiers and the motion estimation is negligible. Thus, they
are delegated to the CPU.

Both metrics are implemented with several kernels. Defining what tasks are coded
into a kernel is a programmer’s decision. In this work, most of the kernels are oriented to
computation, but others prepare data for further processing by other kernel. Moreover,

928 J. Gómez-Luna et al.

some kernels are based on sample codes, included in the CUDA SDK, which implement
commonly used functions, such as separable convolution [10] or histogram [11].

CBM and LBM require, first, a features extraction and, second, the comparison of
these features. CBM is divided into edge detection, orientation table generation and
correlation between consecutive orientation tables. Features extraction in LBM consists
of generating a luminance histogram for each frame. After that, histograms are corre-
lated using a 1D cross correlation. Table 1 presents the kernels of this implementation.

Table 1. Collection of kernels used in the implementation of CBM and LBM. Some of them are
custom developed, while others are based on CUDA separable convolution and histogram.

Stage Kernel Description Development
Convolution
Row

Row filtering Based on
CUDA sample

Convolution
Column

Column filtering Based on
CUDA sample

Gradient
Calculation

Gradient computation Custom

Canny Edge
Detection

Non-Maximum
Suppression

Determines if a pixel belongs to a contour Custom

Compact List Compacts sparse contour points matrix into a
dense list

CustomGeneralized
Hough
Transform OT Generation Search pairings for each contour point.

Generates the orientation table
Custom

Table of Terms
in a Window

Adds an element of the OT and the elements in
a square window

Based on
CUDA sample

Normalization
Term

Generates the normalization term of an OT Custom

2D Cross
Correlation

1D Correlation Correlates an OT and a table of terms in a
window. The result is the contour similarity
value

Custom

Luminance
Histogram

64 bins
Histogram

Generates a 64 bins histogram of an image.
Per-thread sub-histograms are reduced with
global memory atomic functions

Based on
CUDA sample

Vector of Terms
in a Window

Generates a vector of terms in a window.
Implemented by a row convolution with a 1D
filter of size 3 elements equal to 1

Based on
CUDA sample

Normalization
Term

Normalization term of a histogram Custom

1D Cross
Correlation

1D Correlation Correlates a histogram and a vector of terms in
a window of the next frame. The result is the
luminance similarity value

Custom

4 Parallelizing the Contour Based Metric

CBM requires much more execution time than LBM. In fact, the generation of the OT
is the most time consuming step. Moreover, once the edge detection has been per-
formed, computation turns irregular. The number of contour points obviously depends
on the frame. Thus, the generation of the OT is workload dependent. The challenge
of this work is finding an efficient implementation, which guarantees a constant
performance improvement.

 Parallelization of a Video Segmentation Algorithm on CUDA–Enabled GPU 929

4.1 Canny Edge Detection

This work implements a version of the Canny algorithm without thresholding with
hysteresis, which is usually its slowest part. This version of the Canny algorithm is
adapted to the abrupt and gradual transitions detection algorithm, scope of this work,
and is not an entire implementation as is the recently presented in [12].

The first part of the Canny algorithm convolves the image with two Gaussian fil-
ters, in order to reduce noise. Both filters are separable, what makes easier and more
efficient its implementation. This is based on a separable convolution kernel included
in the CUDA SDK. The second part obtains the intensity and direction of the gradi-
ent. This computation is applied over all pixels of the image. Finally, the last part is
carried out to determine if the gradient magnitude assumes a local maximum in the
gradient direction. A pixel belongs to a contour, if its gradient magnitude is greater
than a threshold and the gradient magnitudes of the adjacent pixel in the gradient
direction. Fig. 2 explains this process.

Convolution separable and gradient calculation are regular as they are applied to all
pixels in the same way. Hence, their adaptation to GPU is easy and achieves an im-
portant improvement. The last part, non-maximum suppression, presents some unde-
sirable features for GPU, because computation depends on the gradient direction. This
is implemented with conditional clauses, which involve different alternatives for the
threads in a warp. Thus, some threads in the warp are not executed simultaneously,
i.e. thread execution is serialized. Performance can be improved by loading data,
which is being reused several times during the kernel, into shared memory. Each
thread block loads a row tile, the upper row tile and the lower row tile into its shared
memory, as is shown in Fig. 2.

4.2 Generalized Hough Transform

As it has been seen, Canny algorithm returns a sparse matrix of contour points. After
that, computation turns very irregular along the pixels of the image, turning the paral-
lelization on GPU pretty much difficult.

A straightforward implementation can use one thread per pixel. If the pixel is a
contour point, the thread will search the rest of contour points, in order to check
whether there is a pairing or not. This approach does not achieve a good performance,
since it requires conditional clauses, which prevent the threads in a warp from execut-
ing simultaneously. Thus, computation will be serialized and the computing power of
the GPU, wasted. In fact, most of the threads will turn idle, because only a small
amount of threads correspond to a contour point. Moreover, these active threads
should examine the whole image, in order to find a reduced number of contour points.

A better implementation should reorganize the input data, in order to maintain
every thread active. In this paper, contour points are compacted and then assigned to
the threads. Thus, the generation of the OT consists of two kernels.

Compacting the Contour Points. The first kernel compacts the contour points in a
single dense list, which contains the coordinates of the contour points and their
gradient directions. Each thread evaluates one pixel. If it is a contour point, the thread
increments an accumulator, lied in global memory, using an atomic addition. The

930 J. Gómez-Luna et al.

Fig. 2. Non-maximum suppression. A thread block is focused on a row tile (red), but also loads
to shared memory the upper and the lower row tiles (blue). A pixel belongs to a contour if its
gradient magnitude is greater in the direction of the gradient (lime). If it is not, the pixel is
discarded as contour point (pale blue).

current value of the accumulator is used as index for the compact list, as is showed in
Fig. 3. Thus, the size of this list is the number of contour points, which is dependent
on the frame. This conversion from sparse matrix to dense list makes more efficient
the subsequent data management and computation.

Generating the Orientation Table. The compact list is the input data to the second
kernel. It uses a number of thread blocks, which depends on the number of contour
points. While the algorithm is processing a video, the size of the thread block is fixed.
Instead, the number of blocks is varying in each call to the kernel, because it is the
number of contour point divided by the size of the thread block. This makes the
kernel adaptable to any image. Each thread block takes a part of the compact list and
loads it in shared memory. Then, it searches pairings for each contour point,
comparing the gradients within its own sub-list during the first iteration. Next
iterations require loading in shared memory the sub-list correspondent to other blocks,
in order to compare the gradient of a contour point with any other in the list. Fig. 4
explains this process. Each time a pairing is found, the corresponding element of the
OT, which resides in global memory, is incremented by using an atomic addition.
Thus, the OT is generated as a square histogram.

An alternative to the use of atomic additions, which unavoidably serialize the exe-
cution, could be generating an OT per thread in shared memory. Each thread would
be assigned to one contour point and would search pairings for it, in order to create its
own OT. Finally, all OTs would be added by a reduction. The major drawback of this
strategy is that the size of the OT is 45x45. Thus, when more than two threads are
assigned to a block (typically, the number of threads per block is 64) the private OTs
do not fit into shared memory and these tables need to be mapped into global mem-
ory. Taking into account that the accumulation operation generates non-coalesced
memory access pattern, the high latency of the global memory will not allows to
obtain good performance values.

 Parallelization of a Video Segmentation Algorithm on CUDA–Enabled GPU 931

Fig. 3. Sparse matrix to dense list conversion: 1. The thread checks if the pixel is a contour
point; 2. If it is, the thread increments an accumulator in global memory; 3. Copies the contour
point coordinates and its gradient direction into the compact list.

Fig. 4. OT generation: 1. Compact list is divided into sub-lists and these are assigned to each
thread block; 2. The block search pairings in all the sub-lists; 3. If a pairing is found, the corre-
sponding element of the OT in global memory is incremented using an atomic addition.

4.3 2D Cross Correlation

The preceding stage calculates the OT of an image, which is a dense matrix. Compu-
tation is regular again. During the first part of this stage, each element of the OT is
windowed, i.e. it is added to the elements of a square window centered in it. This
generates a table of terms in a window of the same size than the OT. This part can
also be implemented using the separable convolution and two one-dimensional filters
with all the elements equal to 1. The table of terms is a window of a frame is then
correlated with the OT of the preceding frame and the same OT rotated clockwise and
counterclockwise, resulting three similarity values. The highest of these values is the
result of the kernel.

5 Experimental Results

This section presents the evaluation of the performance of the implemented algorithm.
First, results on three CUDA-enables GPUs are analyzed. Then, the performance of a
multi-core implementation with OpenMP on two platforms is showed, in order to
compare with the results on the GPUs.

932 J. Gómez-Luna et al.

5.1 Performance on CUDA-Enabled GPUs

This implementation has been tested on three CUDA-enabled GPUs, whose features
are showed in Table 2. They permit to compare the performance of the algorithm on
the three more recent nVIDIA GPU generations. As it can be seen, the major differ-
ence between GeForce 8 and GeForce 9 series is the number of multiprocessors. Both
8800 GTS and 9800 GX2 have compute capability 1.1. This permits global atomic
functions on 32-bit words in global memory. GeForce 200 series has compute capa-
bility 1.3, which improves features significantly. It allows atomic functions in global
and in shared memory and supports double-precision floating-point numbers.

The workloads for the tests are 500 frames fragments of four MPEG videos from
the MPEG-7 Content Set. Table 3 shows the average number of contour points and
pairings per frame. These values have a clear influence on execution time, as it is
explained below. Fig. 5 presents the execution time for the four fragments of the vid-
eos. GeForce GTX 280 improves significantly the performance of its predecessors.
The main reason is the greater number of multi-processors. GeForce 9800 GX2 does
not outperform significantly the results of GeForce 8800 GTS, since only one core of
16 multi-processors is used.

Table 2. Hardware and software features in nVIDIA GeForce GPUs

Parameter 8800 GTS 9800 GX2 GTX 280
Multi-Processors per GPU 12 2x16 30
Processors/Multi-processor 8 8 8
Threads/Warp 32 32 32
Threads/Block 512 512 512
Threads/Multi-Processor 768 1024 1024
Warps/Multi-procesor 24 24 32
32-bit registers/Multi-Processor 8192 8192 16384
Shared memory/Multi-Processor 16 Kbytes 16 Kbytes 16 Kbytes
Global memory 512 Mbytes 1 Gbyte 1 Gbyte

A previous analysis of the execution time of each kernel concluded that the genera-

tion of the Orientation Tables takes more than 90% of the execution time of the algo-
rithm. This is clearly conditioned by the number of contour points and pairings. This
is the main bottleneck for achieving a better performance in this application. The
reason is the high latency of the global memory, which is accessed continuously in
order to load sub-lists into shared memory, while searching for pairings. Moreover,
once a pairing has been found, the corresponding element of the OT is incremented by
using an atomic addition, which serializes the work of the threads. Although other
parts of the algorithm, such as Canny, achieve a speedup of 15, the global improve-
ment is limited by the pretty much slower OT generation.

In line with the efforts of accelerating the algorithm, stream management capabil-
ity of CUDA has been used in order to overlap the transference of the frames from
host memory to device memory. Unfortunately, this transference is less than 1% of
the execution time of the kernels. Thus, the improvement is negligible.

 Parallelization of a Video Segmentation Algorithm on CUDA–Enabled GPU 933

Table 3. Test workloads characteristics. The four videos have a resolution of 352x288 pixels.
Number of contour points and pairings are average values per frame, in the 500 frames
fragments.

Video Description Contour
points

Pairings

Basket Basketball match: Images of the court and people in the stands 24902 22348724
Cycling Cycling race: A cyclist on the road, surrounded by public 10850 5354556
Drama Television series: Some actors in an indoor scenario 21714 19167915
Movie Beginning of a movie: Credits on a black background 2833 615818

Fig. 5. Execution times of the CUDA implementation on the GPUs for the four videos. Results
are represented in seconds.

5.2 An OpenMP Implementation

The abrupt and gradual transitions detection algorithm has also been implemented
with OpenMP, in order to compare the performance on the GPUs and on two multiple
cores platforms. Table 4 shows some features of both platforms.

The OpenMP implementation takes advantage of the Thread Level Parallelism in
both platforms by following a data decomposition strategy. Parallel-for pragmas are
used to assign equally the workload to the threads. Fig. 6 presents the results on both
platforms for the videos in Table 3. As in the CUDA implementation, the execution
time is conditioned by the number of contour points and pairings. Speedup, referred to
the 1 thread version, varies in a similar way in both platforms, as shown in Table 5. It
scales well for 2 and 4 threads, but falls when the contour points and the pairings
decrease or when the number of threads increases, that is, the implementation per-
forms worse when the workload per thread decreases.

Table 4. Hardware features of both multiple core platforms

Platform 8-way Intel Xeon Intel Core2Quad
Sockets 2 1
Cores/Socket 4 4
Clock speed 2.66 GHz 2.40 GHz
L2 Cache 4 Mbytes/2 cores 4 Mbytes/2 cores

934 J. Gómez-Luna et al.

Fig. 6. Execution times of the OpenMP implementation on 8-way Intel Xeon (left) and on Intel
Core2Quad (right) for the four videos. Results are represented in seconds.

Table 5. Speedup of the OpenMP implementation for both platforms

Platform Video 2 threads 4 threads 8 threads
Basket 1.90 3.32 5.57
Cycling 1.81 3.07 4.65
Drama 1.92 3.37 5.47

8-way Intel
Xeon

Movie 1.83 2.54 3.61
Basket 1.90 3.32 -
Cycling 1.81 3.09 -
Drama 1.90 3.32 -

Intel
Core2Quad

Movie 1.83 2.53 -

5.3 Comparison between CUDA and OpenMP Implementations

The main goal of this work is the implementation of the algorithm in CUDA, but it
also has been developed an implementation in OpenMP, in order to compare their
performances. If the GPUs are being used as SIMD coprocessors, they should im-
prove the results of current multi-core CPUs. In this way, if the results on the GeForce
GTX 280 are compared with the ones on Intel Core2Quad and Intel Xeon, the conclu-
sions are very encouraging.

Performance on GeForce GTX 280 achieves a speedup from 7.6 to 11.3 versus the
1 thread implementation on Intel Core2Quad, depending on the video. Moreover, the
higher speedup corresponds to a greater number of pairings in the frames. Comparing
with the 4 threads implementation on the same CPU, the speedup varies between 2.8
and 3.5. This is almost four times faster than one of the most recently released desk-
top processors.

Only the 8 threads implementation on Intel Xeon is in the same order of magnitude
than GeForce GTX 280. The 8 threads implementation slightly beats the GTX 280
results for the basket video, but not for the rest. The GTX 280 improves up to 22% the
execution time of the 8 threads implementation for drama and movie.

6 Conclusions

This paper has presented the parallelization of an abrupt and gradual transitions detec-
tion algorithm on CUDA-enabled GPUs. The implementation of some stages with

 Parallelization of a Video Segmentation Algorithm on CUDA–Enabled GPU 935

irregular computation and the conversion between storing formats, i.e., sparse matrix
to dense list, have been the major challenge. Its evaluation on the three more recent
nVIDIA GPU generations has revealed a very good performance and has shown the
possibility of using GPUs for accelerating video segmentation applications.

The implementation on the recently released nVIDIA GeForce GTX 280 achieves
an acceleration up to 11.3 comparing to a 1 thread implementation of the algorithm on
a current desktop processor. Moreover, it is up to 3.5 times faster than a 4 thread
OpenMP implementation, which has also been developed. Only an implementation on
an 8-way multi-processor approaches the performance on GeForce GTX 280. This is
a sample of the computing power of the GPUs and their applicability for general-
purpose processing. Its use is also clearly justified in terms of costs, since the price of
a current GPU is 10% of an 8-core Intel Xeon.

References

1. Sáez, E., Benavides, J.I., Guil, N.: Reliable Real Time Scene Change Detection in MPEG
Compressed Video. In: IEEE International Conference on Multimedia and Expo. (2004)

2. Sáez, E., Palomares, J.M., Benavides, J.I., Guil, N.: Global Motion Estimation Algorithm
for Video Segmentation. In: IS&T/SPIE Visual Communications and Image Processing
(2003)

3. Compute Unified Device Architecture (CUDA), http://www.nvidia.com/cuda
4. Open SMP Programming (OpenMP), http://www.openmp.org
5. OpenVIDIA: Parallel GPU Computer Vision,

 http://openvidia.sourceforge.net
6. Farrugia, J.P., Horain, P., Guehenneux, E., Alusse, Y.: GPUCV: A Framework for Image

Processing Acceleration with Graphics Processors. In: IEEE International Conference on
Multimedia and Expo. (2006)

7. Canny, J.F.: A Computational Approach to Edge Detection. IEEE Trans Pattern Analysis
and Machine Intelligence 8, 679–698 (1986)

8. Guil, N., González, J.M., Zapata, E.L.: Bidimensional Shape Detection using an Invariant
Approach. Pattern Recognition 32, 1025–1038 (1999)

9. Sáez, E., González, J.M., Palomares, J.M., Benavides, J.I., Guil, N.: New Edge-Based Fea-
ture Extraction Algorithm for Video Segmentation. In: IS&T/SPIE Symposium, Image and
Video Communications and Processing (2003)

10. Podlozhnyuk, V.: Image Convolution with CUDA. nVIDIA white paper (2007)
11. Podlozhnyuk, V.: Histogram Calculation in CUDA. nVIDIA white paper (2007)
12. Luo, Y., Duraiswami, R.: Canny Edge Detection on NVIDIA CUDA. In: IEEE Computer

Society Conference on Computer Vision and Pattern Recognition Workshops (2008)

	Parallelization of a Video Segmentation Algorithm on CUDA–Enabled Graphics Processing Units
	Introduction
	Temporal Video Segmentation
	Implementing with CUDA
	CUDA Programming Interface
	Decomposition of the Algorithm in Kernels

	Parallelizing the Contour Based Metric
	Canny Edge Detection
	Generalized Hough Transform
	2D Cross Correlation

	Experimental Results
	Performance on CUDA-Enabled GPUs
	An OpenMP Implementation
	Comparison between CUDA and OpenMP Implementations

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

