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Abstract. Recent publications have emphasised map-reduce as a gen-
eral programming model (labelled Google map-reduce), and described
existing high-performance implementations for large data sets. We
present two parallel implementations for this Google map-reduce skele-
ton, one following earlier work, and one optimised version, in the parallel
Haskell extension Eden. Eden’s specific features, like lazy stream pro-
cessing, dynamic reply channels, and nondeterministic stream merging,
support the efficient implementation of the complex coordination struc-
ture of this skeleton. We compare the two implementations of the Google
map-reduce skeleton in usage and performance, and deliver runtime anal-
yses for example applications. Although very flexible, the Google map-
reduce skeleton is often too general, and typical examples reveal a better
runtime behaviour using alternative skeletons.

1 Introduction

To supply conceptual understanding and abstractions of parallel programming,
the notion of algorithmic skeletons has been coined by Murray Cole in 1989 [1].
An algorithmic skeleton abstractly describes the (parallelisable) structure of an
algorithm, but separates specification of the concrete work to do as a parame-
ter function. Skeletons are meant to offer ready-made efficient implementations
for common algorithmic patterns, the specification of which remains sequential.
Thus, an algorithmic skeleton contains inherent parallelisation potential in the
algorithm, but this remains hidden in its implementation. A broader research
community has quickly adopted and developed the idea further [2]. Skeletons are
a well-established research subject in the scientific community, yet until today
they have only little impact on mainstream software engineering, in comparison
with other models, like MPI [3] collective operations and design patterns [4].

To a certain extent, MPI collective operations and algorithmic skeletons follow
the same philosophy: to specify common patterns found in many applications,
and to provide optimised implementations that remain hidden in libraries. How-
ever, while skeletons describe a whole, potentially complex, algorithm, collective
operations only predefine and optimise common standard tasks which are often
needed in implementing more complex algorithms. The design pattern paradigm
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has considerable potential in identifying inherent parallelism in common ap-
plications, capturing complex algorithmic structures, and providing conceptual
insight in parallelisation techniques and problem decomposition. However, it of-
ten merely targets concepts and leaves implementation to established low-level
libraries and languages (see e.g. textbook [5] for a typical example). Design pat-
terns thus cannot provide the programming comfort and abstraction level of
algorithmic skeletons. Moreover, collective operations and design patterns, by
their very nature, are explicit about parallelism already in their specification,
whereas skeletons completely hide parallelism issues.

Even more remarkable is the fact that applications from industry have mean-
while achieved the mainstream breakthrough for the skeleton idea (even though
it is never called like this). In 2004, we saw the first publication which ab-
stractly described large-scale map-and-reduce data processing at Google [6,7].
It was proposed as a “programming model” for large dataset processing, but
in fact precisely realises the skeleton idea. A publication by Ralf Lämmel [8]
points out shortcomings of the skeleton’s formal specification, provides sequen-
tial Haskell implementations, and briefly discusses parallelism. Given the great
acceptance that the programming model has found, and its close relation to
skeleton programming, this paper investigates possible parallel implementations
starting from Lämmel’s Haskell code, and discusses their respective advantages
and drawbacks.

From the perspective of functional languages, skeletons are specialised higher-
order functions with a parallel implementation. Essentially, the skeleton idea
applies a functional paradigm for coordination, independent of the underly-
ing computation language. While skeleton libraries for imperative language, e.g.
[9,10], typically offer a fixed, established set of skeletons, parallel functional
languages are able to express new skeletons, or to easily create them by compo-
sition [11,2]. Some functional languages parallelise by pre-defined data parallel
operations and skeletons, like NESL [12], OCamlP3l [13], or PMLS [11]. These
fixed skeleton implementations are highly optimised and allow composition, but
not the definition of new problem-specific skeletons or operations. More explicit
functional coordination languages are appropriate tools not only to apply skele-
tons, but also for their implementation, allowing formal analysis and conceptual
modeling. Coordination structure, programming model and algorithm structure
can be cleanly separated by functional languages, profiting from their abstract,
mathematically oriented nature. In our work, we use the general-purpose parallel
Haskell dialect Eden [14] as an implementation language for the skeletons.

The paper is structured as follows: Section 2 explains the classical map-and-
reduce skeleton defined in Eden, thereby introducing features of the language
we use for our implementations. Section 3 introduces the Google map-reduce
skeleton. Parallel implementation variants are discussed in Section 4. A section
with measurements and analyses for some example applications follows. Section 6
considers related work, the final section concludes.
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2 Parallel Transformation and Reduction in Eden

Classically, reduction over a list of elements is known as the higher-order function
fold (from the left or from the right), and is often combined with a preceding
transformation of the list elements (in other words, map). Denotationally, it is a
composition of the higher-order functions map and fold:

mapFoldL :: (a -> b) -> (c -> b -> c) -> c -> [a] -> c
mapFoldL mapF redF n list = foldl redF n (map mapF list)

mapFoldR :: (a -> b) -> (b -> c -> c) -> c -> [a] -> c
mapFoldR mapF redF n list = foldr redF n (map mapF list)

In this general form, the folding direction leads to slightly different types of
the reduction operator redF. Parallel implementations have to unify types b and c

and require associativity to separate sub-reductions. In addition, the parameter n
should be neutral element of redF. Under these conditions, the folding direction is
irrelevant, as both versions yield the same result. Parallel implementations may
even reorder the input, requiring the reduction operator redF to be commutative.

Assuming associativity and commutativity, we can easily define a parallel
map-and-reduce skeleton for input streams in the functional Haskell dialect
Eden, as shown in Fig.1.

parmapFoldL :: (Trans a, Trans b) =>
Int -> -- no. of processes
(a -> b) -> -- mapped on input
(b -> b -> b) -> -- reduction (assumed commutative)
b -> -- neutral element for reduction
[a] -> b

parmapFoldL np mapF redF neutral list = foldl’ redF neutral subRs
where sublists = unshuffle np list

subFoldProc = process (foldl’ redF neutral . (map mapF))
subRs = spawn (replicate np subFoldProc) sublists

unshuffle :: Int -> [a] -> [[a]] -- distributes the input stream
unshuffle n list = ... -- round-robin in np streams
spawn :: [Process a b] -> [a] -> [b] -- instantiates a set of processes
spawn ps inputs = ... -- with respective inputs

Fig. 1. Parallel map-reduce implementation in Eden

The input stream is distributed round-robin into np inputs for np Eden pro-
cesses, which are instantiated by the Eden library function spawn. Process is the
type constructor for Eden Process abstractions, which are created by the function
process :: (a -> b) -> Process a b. Type class Trans provides implicitly used data
transfer functions. The spawned processes perform the transformation (map) and
pre-reduce the map results (duplicating the given neutral element) by the strict
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Fig. 2. Computation scheme of Google map-reduce

left-fold foldl’. As explained, the fold operator redF has got a restricted type in
order to combine the subresults in a second stage, and is assumed commutative
because input for the pre-reductions is distributed round-robin and streamed.

3 The “Google Map-Reduce” Skeleton

A more general variant of map-and-reduce has been proposed, as a programming
model for processing large datasets, by Google personnel Jeff Dean and San-
jay Ghemawat. In January 2008, an update of the original publication (OSDI
2004 [6]) appeared in the ACM communications [7].

The intention to provide a framework which allows one “to express the simple
computations [...] but hides the messy details of parallelization, fault-tolerance,
data distribution, and load balancing, in a library”[6] is precisely the skeleton
idea. However, the word “skeleton” does not figure in any of the two publications!
Neither publication claims for the model to be new, its essential merit is that it
brought the skeleton approach to industry. The model has found great acceptance
as a programming model for parallel data processing (e.g. [15,16]).

The computation scheme of Google map-reduce is depicted in Fig. 2. In
a nutshell, a Google map-reduce instance first transforms key/value pairs into
(intermediate) other key/value pairs, using a mapF function. After this, each
collection of intermediate data with the same key is reduced to one resulting
key/value pair, using a reduceF function. In-between the transformation and the
reduction, the intermediate data is grouped by keys, so the whole computation
has two logical phases. The parallelisation described in the original work [6] im-
poses additional requirements on the applied parameter functions; which, on the
other hand, have more liberal type constraints than what map and foldl would
require. Ralf Lämmel, in his related publication [8], captures them in a formal
specification derived from the original examples and description, using Haskell.1

gOOGLE_MapReduce :: forall k1 k2 v1 v2 v3. Ord k2 => -- for grouping
(k1 -> v1 -> [(k2,v2)]) -- ’map’ function, with keys 1
-> (k2 -> [v2] -> Maybe v3) -- ’reduce’ function, can use key 2
-> Map k1 v1 -- A key to input-value mapping
-> Map k2 v3 -- A key to output-value mapping

1 The code is provided online by Lämmel, so we do not reproduce it here, see
http://www.cs.vu.nl/˜ralf/MapReduce/
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The ‘map’ function takes an input pair of type (k1,v1) (k1 could actually be
subsumed under v1 by pairing) and may produce a whole list of intermediate
key-value pairs [(k2,v2)] from it, which are then grouped by key (the ordering
constraint enables more efficient data structures – an equality constraint Eq k2

would suffice). Each of the value lists for a key is then processed by the ‘reduce’
function to yield a final result of type v3 for this key, or no output (thereby the
Maybe-type). Unlike the usual fold, output does not necessarily have the same
type as the intermediate value (but typically v2 and v3 are of the same type).
So the parameter function of fold in the Google publications is not properly
a function which could be the argument to a fold (i.e. reduce) operation, nor
is it always a reduction in the narrow sense. Additionally, as Lämmel points
out, the original paper confuses lists and sets: The input to a skeleton instance
is neither a set, nor a list, but a finite mapping from keys to values, where
duplicate values are not allowed for the same key. And likewise, the output of
the skeleton conceptually does not allow the same key to appear twice.

Examples: A classical combination of map and foldl can be expressed as a
special case of the more general skeleton. The map function here produces sin-
gleton lists and assigns a constant intermediate key 0 to every one. The reduction
function ignores these keys, and left-folds the intermediate values as usual.
mapfold :: (a -> b) -> (b -> b -> b) -> b -> [a] -> b
mapfold mapF redF neutral input = head (map snd (toList gResult))

where mapF’ _ x = [(0,mapF x)]
redF’ _ list = Just (foldl’ redF neutral list)
gResult = gOOGLE_MapReduce mapF’ redF’

(fromList (zip (repeat 0) input))

A more general example, often given in publications on Google map-reduce,
is to compute how many times certain words appear in a collection of web pages.
The input is a set of pairs: web page URLs and web page content (and the URL
is completely ignored). The ‘map’ part retrieves all words from the content and
uses them as intermediate keys, assigning constant 1 as intermediate value to all
words. Reduction sums up all these ones to determine how many times a word
has been found in the input.
wordOccurrence = gOOGLE_MapReduce toMap forReduction
where toMap :: URL -> String -> [(String,Int)]

toMap url content = zip (words content) (repeat 1)
forReduction :: String -> [Int] -> Maybe Int
forReduction word counts = Just (sum counts)

A range of other, more complex applications is possible, for instance, itera-
tively clustering large data sets by the k-means method, used as a benchmark
in two recent publications [15,16]. We will discuss this benchmark in Section 5.

4 Parallel Google Map-Reduce

Google map-reduce offers different opportunities for parallel execution. First, it
is clear that the map function can be applied to all input data independently.
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-- inner interface
parMapReduce :: Ord k2 =>

Int -> (k2 -> Int) -- No. of partitions, key partitioning
-> (k1 -> v1 -> [(k2,v2)]) -- ’map’ function
-> (k2 -> [v2] -> Maybe v3) -- ’combiner’ function
-> (k2 -> [v3] -> Maybe v4) -- ’reduce’ function
-> [Map k1 v1] -- Distributed input data
-> [Map k2 v4] -- Distributed output data

parMapReduce parts keycode mAP cOMBINER rEDUCE
= map ( -- parallelise in n reducers: parmap

reducePerKey rEDUCE -- 7. Apply ’reduce’ to each partition
. mergeByKey ) -- 6. Merge scattered intermediate data

. transpose -- 5. Transpose scattered partitions

. map ( -- parallelise in n=m mappers: farm n
map ( reducePerKey cOMBINER -- 4. Apply ’combiner’ locally

. groupByKey ) -- 3. Group local intermediate data
. partition parts keycode -- 2. Partition local intermediate data
. mapPerKey mAP ) -- 1. Apply ’map’ locally to each piece

Fig. 3. Parallel Google map-reduce skeleton, following Lämmel [8]
(we have added the parallelisation annotations in bold face)

Furthermore, since reduction is done for every possible intermediate key, sev-
eral processors can be used in parallel to reduce the values for different keys.
Additionally, the mapper processes in the implementation perform pre-grouping
of intermediate pairs by (a hash function of) intermediate keys. Usually, im-
plementations strictly split the whole algorithm in two phases. The productive
implementation described in [7] is based on intermediate files in Google’s own
shared file system GFS. Pre-grouped data is periodically written to disk, and
later fetched and merged by the reducer tasks before they start reduction of val-
ues with the same key. This makes it possible to reassign jobs in case of machine
failures, making the system more robust. Furthermore, at the end of the map
phase, remaining map tasks are assigned to several machines simultaneously to
compensate load imbalances.

Following Lämmel’s specification. To enable parallel execution, Lämmel
proposes the version shown in Fig. 3. Interface and functionality of the Google
map-reduce skeleton are extended in two places.

First, input to the map function is grouped in bigger “map jobs”, which allows
to adapt task size to the resources available. For instance, the job size can be
chosen appropriately to fit the block size of the file system. For this purpose, the
proposed outer interface (not shown) includes a size parameter and an estimation
function. The skeleton input is sequentially traversed and partitioned into tasks
with estimated size close to (but less than) the desired task size.

Second, two additional pre-groupings of equal keys are introduced, one for
a pre-reduction in the mapper processes, and one to aggregate input for the
reducer processes. The map operation receives a task (a set of input pairs), and
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produces a varying number of intermediate output. This output is sorted using
intermediate keys, and the map processes pre-group output with the same key,
using the added parameter function cOMBINER. In many cases, this combiner will
be the same function as the one used for reduction, but in the general case, its
type differs from the rEDUCE function type. To reduce the (potentially unbounded)
number of intermediate keys, these intermediate (pre-reduced) results are then
partitioned into a fixed number of key groups for the reducer processes, using
two additional skeleton parameters. The parameter parts indicates how many
partitions (and parallel reducer processes) to use, and the function keycode maps
(or: is expected to map; the code in [8] does not check this property) each possible
intermediate key to a value between 1 and parts. This mimics the behaviour
of the productive Google implementation, which saves partitioned data into n
intermediate files per mapper.

Our parallel straightforward implementation of the skeleton consists of replac-
ing the map calls in the code (see Fig. 3) by appropriate parallel map implementa-
tions. The number of reducers, n, equals the number of parts into which the hash
function keycode partitions the intermediate keys. A straightforward parallel map
skeleton with one process per task can be used to create these n reducer pro-
cesses. An implementation which verbally follows the description should create
m mapper processes, which process a whole stream of input tasks each. Different
Eden skeletons realise this functionality: a farm skeleton with static task distri-
bution, or a dynamically balanced workpool [14]. However, the interface proposed
by Lämmel lacks the m parameter, thus our parallelisation simply uses as many
mappers as reducer processes, n = m.

An optimised implementation. A major drawback of this straightforward
version, directly derived from Lämmel’s code [8], is its strict partitioning into

mapF
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reduceF k(n)
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Fig. 4. Parallel Google map-reduce using distributed transpose functionality
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the map phase and the reduce phase, and the call to transpose in between. In
the Eden implementation suggested in Fig 3, all intermediate data produced by
the mapper processes is sent back to the caller, to be reordered (by transpose)
and sent further on to the reducer processes.

Our optimised implementation uses direct stream communication between
mappers and reducers, as depicted in Fig. 4. Furthermore, instances of mapper
and reducer are gathered in one process, which saves some communication (not
shown). In order to directly send the respective parts of each mapper’s output to
the responsible reducer process via channels, a unidirectional m : n communica-
tion must be set up. Each process creates a list of m channels and passes them
on to the caller. The latter thus receives a whole matrix of channels (one line re-
ceived from each worker process) and passes them on to the workers column-wise.
Intermediate data can now be partitioned as before, and intermediate grouped
pairs directly sent to the worker responsible for the respective part.

Google’s productive implementation realises this m : n communication by
shared files. The whole data subset processed by one mapper is pre-grouped
into buckets, each for one reducer process, and written to a distributed mass
storage system (GFS), to be fetched by reducer processes later. While this is
clearly essential for fault tolerance (in order to restart computations without
data being lost in failing machines), we consider accumulating all intermediate
data on mass storage a certain disadvantage in performance and infrastructure
requirements.

5 Measurements for Example Applications

Example applications of Google map-reduce can be taken from literature
[15,16], which, however, tend to apply very simple reduce functions and can
be realised using the elementary map-reduce without keys as well. We have
chosen two example programs with non-trivial key-based reduction from litera-
ture, after comparing performance for a simple map-fold computation. We have
tested:

– a simple map-fold computation (sum of Euler totient values),
– the NAS-EP benchmark (using key-based reduction),
– the K-Means implementation (using key-based reduction)

on a Beowulf cluster2 with up to 32 Intel Pentium 4 SMP processor elements
(PEs) running at 3 GHz with 512 MB RAM and a Fast Ethernet interconnec-
tion. Trace visualisations show activity profiles of the PEs (y-axis) over time
(x-axis) in seconds.

Sum of Euler totient values. The sumEuler program is a straightforward
map-fold computation, summing up values of the Euler function ϕ(k). ϕ(k)
tells how many j < k are relatively prime to k, and the test program

2 At Heriot-Watt University Edinburgh.
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simple parmapFold googleMapReduce (distrib.trans)

Fig. 5. Sum (reduction) of Euler totient (map) applications, input 15k

computes it näıvely instead of using prime factorisation. So, the program
computes

∑n
k=1 ϕ(k) =

∑n
k=1 |{j < k | gcd(k, j) = 1}|, or in Haskell syntax:

result = foldl1 (+) (map phi [1..n])
phi k = length (filter (primeTo k) [1..(k-1)])

Fig. 5 shows runtime traces for two versions: the straightforward parallel map-
fold skeleton and the Google map-reduce version with distributed transposition.

Both programs perform well on our measurement platform. The Google map-
reduce implementation suffers from the overhead of distributing the map tasks
(which is almost entirely eliminated in the map-fold version), whereas the other
version obviously exposes uneven workload due to the static task distribution.

NAS-EP benchmark. NAS-EP (Embarrassingly Parallel) [17] is a transfor-
mation problem where two-dimensional statistics are accumulated from a large
number of Gaussian pseudo-random numbers, and one of only few problems

Fig. 6. NAS-EP benchmark, input 108

which profit from the per-
key reduction functional-
ity provided by the Google
map-reduce skeleton (keys
indicating the 10 differ-
ent square annuli). Fig. 6
shows the results, using
worker functions for re-
duced input data size,
and the skeleton version
with distributed transpo-
sition. Workload distribu-
tion is fair, and the system
profits from Eden’s stream
functionality to finish early
in the reducer processes.

Parallel k-means. The final example, k-means, illustrates that the additional
reduction using the cOMBINE function (as opposed to simply applying rEDUCE
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mAP :: Int -> Vector -> [(Int,Vector)]
mAP _ vec = [(1+minIndex (map (distance vec) centroids),vec)]

cOMBINE :: Int -> [Vector] -> Maybe (Int,Vector)
cOMBINE _ vs = Just (length vs, center vs)

rEDUCE :: Int -> [(Int,Vector)] -> Maybe (Int,Vector)
rEDUCE _ vs = Just (round w,v)

where vs’ = map (\(k,v) -> (fromIntegral k,v)) vs ::[(Double,Vector)]
(w,v) = foldl1’ combineWgt vs’

combineWgt :: (Double,Vector) -> (Double,Vector) -> (Double,Vector)
combineWgt (k1,v1) (k2,v2) = (k1+k2,zipWith (+) (wgt f v1) (wgt (1-f) v2))

where {f = 1/(1+(k2/k1)); wgt x = map (*x) }

Fig. 7. Parameter functions for the parallel k-means algorithm

twice) is necessary, but might render algorithms more complicated. It also shows
that Google map-reduce, however expressive, can turn out a suboptimal choice.
The input of the k-means benchmark is a collection of data vectors (and arbitrary
irrelevant keys). A set of k cluster centroids is chosen randomly in the first
iteration. Parameterising the function to map with these centroids, the map
part computes distances from the input vector to all centroids and yields the ID
of the nearest centroid as the key, leaving the data as the value. The reduction,
for each centroid, computes the mean vector of all data vectors assigned to the
respective cluster to yield a set of k new cluster centroids, which is used in the
next iteration, until the cluster centroids finally converge to desired precision.

input output
coordinate

W W WW

decideEnd

(state)

Fig. 8. Iteration skeleton

Fig. 9. k-means algorithm, Google map-reduce followed by iteration version
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Fig. 7 shows the parameter functions for implementing k-means with Google
map-reduce. Instead of computing sub-centroids by a simple sum, the vector
subsets are precombined to a sub-centroid with added weight (cOMBINE function),
to avoid numeric overflows and imprecision. The final reduction rEDUCE then uses
the weight, which indicates the (arbitrary) number of vectors assigned to the
sub-centroid, and combines centroids by a weighted average.

However, k-means is not suitable for the Google map-reduce skeleton on dis-
tributed memory machines. The problem is, the algorithm works iteratively in
fixed steps, and amounts to setting up a new Google map-reduce instance for
each iteration. These globally synchronised iteration steps and the skeleton setup
overhead dominate the runtime behaviour, especially because the tasks are data
vectors, sent and received again in each step. An iteration skeleton (as depicted
in Fig. 8) should be used instead, with the advantage that the data vectors
become initialisation data for the skeleton. The execution trace in Fig. 9 shows
both versions for 25000 data vectors: first 10 iterations of the Google map-reduce
version, then a version using an iteration skeleton (which performs around 90
iterations in shorter time). Communication of the data vectors completely eats
up parallel speedup, whereas they are initialisation data in the second version.

6 Related Work

We have already cited the basic references for the skeleton in question throughout
its description and in the introduction. Originally published in 2004 [6], the
Google employees Dean and Ghemawat have updated their publication recently
with ACM [7], providing more recent figures of the data throughput in the
productive implementation. The Hadoop project [18] provides an open-source
java implementation. A more thorough description of its functionality is provided
by Ralf Lämmel [8], first published online in 2006.

Both the original description by the Google authors and Ralf Lämmel discuss
inherent parallelism of the Google map-reduce skeleton. While Lämmel presents
substantial work for a sound understanding and specification of the skeleton,
his parallelisation ideas remain at a high level, at times over-simplified, and
he does not discuss any concrete implementation. The original Google work
restricts itself to describing and quantifying the existing parallelisation, but
gives details about the physical setup, the middleware in use, and error recovery
strategies.

Several publications have adopted and highlight Google map-reduce, with
different focus. An evaluation in the context of machine-learning applications
can be found in [15]. Ranger et al. [16] present an implementation framework for
Google map-reduce for multicores, Phoenix. They report superlinear speedups
(ranges up to 30) on a 24-core machine, achieved by adjusting the data sizes
to ideal values for good cache behaviour. Other authors have recognised the
advantages of the high-level programming model and propose it for other custom
architectures: Cell [19] and FPGAs [20].
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7 Conclusions

A comprehensive overview of Google map-reduce and its relation to algorithmic
skeletons has been given. We have discussed two implementations for Google
map-reduce, one following earlier work, and an optimised Eden version. As our
runtime analyses for some example applications show, the skeleton implementa-
tion delivers good performance and is easily applicable to a range of problems.
Implementations using explicitly parallel functional languages like Eden open
the view on computation structure and synchronisation, which largely facilitates
skeleton customisation and development.

The popularity of Google map-reduce nicely shows the ease and flexibility of
skeletons to a broader audience; and has found good acceptance in mainstream
development. On the other hand, the popularity of just one skeleton may some-
times mislead application development, not considering alternative skeletons. It
turns out that the full generality of the Google map-reduce skeleton is often
not needed, and other skeletons are more appropriate. Nevertheless, we consider
Google map-reduce a big step for skeleton programming to finally get adequate
attention, as a mathematically sound high-level programming model for novel
parallel architectures.

Acknowledgements: We thank the anonymous referees, Phil Trinder, Kevin
Hammond and Hans-Wolfgang Loidl, for helpful comments on earlier versions.
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8. Lämmel, R.: Google’s MapReduce programming model - Revisited. Science of Com-
puter Programming 70(1), 1–30 (2008)

9. Poldner, M., Kuchen, H.: Scalable farms. In: Proceedings of ParCo 2005. NIC
Series, vol. 33 (2005)

10. Benoit, A.: ESkel — The Edinburgh Skeleton Library. University of Edinburgh
(2007), http://homepages.inf.ed.ac.uk/abenoit1/eSkel/

http://homepages.inf.ed.ac.uk/abenoit1/eSkel/


1002 J. Berthold, M. Dieterle, and R. Loogen

11. Michaelson, G., Scaife, N., Bristow, P., King, P.: Nested Algorithmic Skeletons
from Higher Order Functions. Parallel Algorithms and Appl. 16, 181–206 (2001)

12. Blelloch, G.: Programming Parallel Algorithms. Communications of the
ACM 39(3), 85–97 (1996)

13. Danelutto, M., DiCosmo, R., Leroy, X., Pelagatti, S.: Parallel functional program-
ming with skeletons: the OCamlP3L experiment. In: ACM workshop on ML and
its applications (1998)

14. Loogen, R., Ortega-Mallén, Y., Peña-Maŕı, R.: Parallel Functional Programming
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