
RecTOR: A New and Efficient Method for

Dynamic Network Reconfiguration

Åshild Grønstad Solheim, Olav Lysne, and Tor Skeie

Networks and Distributed Systems Group, Simula Research Laboratory
Lysaker, Norway

Department of Informatics
University of Oslo

Oslo, Norway

Abstract. Reconfiguration of an interconnection network is fundamen-
tal for the provisioning of a reliable service. Current reconfiguration
methods either include deadlock-avoidance mechanisms that impose per-
formance penalties during the reconfiguration, or are tied to the
Up*/Down* routing algorithm which achieves relatively low performance.
In addition, some of the methods require complex network switches, and
some are limited to distributed routing systems. This paper presents a
new dynamic reconfiguration method, RecTOR, which ensures deadlock-
freedom during the reconfiguration without causing performance degra-
dation such as increased latency or decreased throughput. Moreover, it
is based on a simple concept, is easy to implement, is applicable for
both source and distributed routing systems, and assumes Transition-
Oriented Routing which achieves excellent performance. Our simulation
results confirm that RecTOR supports a better network service to the
applications than Overlapping Reconfiguration does.

1 Introduction

Reliable interconnection networks [1] are essential for the operation of current
high-performance computing systems. An important challenge in the effort to
support a reliable network service is the ability to efficiently restore a coherent
routing function when a change has occurred in the interconnection network’s
topology. Such a change in topology could be a result of an unplanned fault in one
of the network’s components, and, as the size of systems grow, the probability
of a failing component increases. Furthermore, planned system updates, where
network components are removed or added, could also cause changes in the
topology. Regardless of the cause of the topology change, the disturbance of the
network service provided to the running applications should be minimized.

When a change has occurred, a new routing function must be calculated for the
resulting topology, and we refer to the transition from the old routing function
to the new one as reconfiguration. A main challenge related to reconfiguration
is deadlock-avoidance. The transition from one routing function to another may
result in deadlock even if each routing function is deadlock-free, as packets that

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 1052–1064, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

RecTOR: A New and Efficient Method 1053

belong to one of the routing functions may take turns that are not allowed in
the other [2].

Most static reconfiguration methods [3,4,5,6] do not allow application traffic
into the network during the reconfiguration. This has an obvious negative impact
on the network service availability, but eliminates the risk of deadlock, as packets
routed according to only one of the routing functions are present in the network
at a time.

A number of studies [7,8,9,10,2,11,12,13,14,15] have focused on dynamic re-
configuration, which allows application traffic into the network during reconfig-
uration, and thereby aims at supporting a better network service than static
reconfiguration do. The studies listed above present general approaches that are
not tied to particular network technologies. Other approaches target a specific
technology such as InfiniBand [16] (see e.g. [17,18]).

Partial Progressive Reconfiguration (PPR) [8] and Close Graphs (CG) [15]
are based on the Up*/Down* [3] routing algorithm, and both restore a correct
Up*/Down* graph from a graph that has been rendered incorrect by a topol-
ogy change. PPR changes the direction of a subset of the network links through
a sequence of partial routing table updates, and is only useful in distributed
routing systems. CG restricts the new Up*/Down* graph such that packets be-
longing to the old and new routing functions can coexist in the network without
causing deadlocks, and thereby supports an unaffected network service during
reconfiguration. Neither PPR nor CG requires virtual channels (VCs) to achieve
deadlock-freedom. However, both methods depend on complicated procedures
to establish the new routing function. Furthermore, the Up*/Down* routing al-
gorithm achieves relatively low performance (Section 3 gives a brief description
of Up*/Down* and its performance issues).

Double Scheme [10] avoids deadlock during reconfiguration by utilizing two
sets of VCs in order to separate packets that are routed according to the two
routing functions. Each set of VCs accepts application traffic in turn while the
other is being drained and reconfigured. Double Scheme can be used between
any pair of routing algorithms. However, in order to avoid deadlock, Double
Scheme generally requires a number of available VCs that resembles the sum of
the number of VCs required by the old and new routing functions.

Overlapping Reconfiguration (OR) is perhaps the most efficient of the pro-
posed methods to reconfigure an interconnection network. It has been categorized
both as a dynamic reconfiguration scheme [19] and as a static reconfiguration
scheme with overlapping phases [20]. OR can be used between any pair of rout-
ing algorithms, ensures in-order packet delivery, and does not depend on the
availability of VCs. Originally, OR could only be applied in distributed routing
systems, but an adaptation was recently proposed for source routed systems [21].
OR requires relatively complex network switches as each switch must hold and
process information regarding the reception and transmission of tokens (spe-
cial packets used for deadlock-avoidance). The tokens regulate the forwarding of
packets that are routed according to the new routing function, and this regula-
tion causes increased latency and reduced throughput during the reconfiguration.

1054 Å.G. Solheim, O. Lysne, and T. Skeie

Furthermore, OR demands that two sets of routing tables are kept during the
reconfiguration.

This paper presents RecTOR, a new dynamic reconfiguration method which
does not impose performance penalties during the change-over from one rout-
ing function to another. RecTOR is based on a simple principle that ensures
deadlock-freedom while packets that follow either routing function can coexist in
the network without restrictions. It does not require complex network switches,
does not need more VCs than a routing function does, and is useful for both
source and distributed routing systems. RecTOR assumes Transition-Oriented
Routing (TOR) [22], a topology agnostic1 routing algorithm that, given sound
path selection, matches the performance of the topology specific Dimension-
Order Routing (DOR) in meshes and tori. Our performance evaluation shows
that, when compared to OR, RecTOR supports a superior network service
during the reconfiguration.

As OR is used in the performance evaluation, the algorithm is detailed in
Section 2. RecTOR is based on TOR, which is outlined in Section 3 through
a comparison with Up*/Down* (which is also used in the performance evalu-
ation). RecTOR is presented in Section 4, and its performance is evaluated in
Sections 5 and 6. Section 7 presents our conclusions.

2 The OR Algorithm

OR uses a special packet called a token to prevent that deadlock occurs during
the transition from one deadlock-free routing function, Rold, to another, Rnew .
A packet must be routed from source to destination according to only one of
the routing functions. Let us refer to packets that follow Rold and Rnew as
packetsold and packetsnew, respectively. OR uses the token to separate packetsold

and packetsnew on each (physical or virtual) communication channel, such that
each channel first transmits packetsold, then the token, and finally packetsnew.

The token propagation procedure is as follows:

– Each injection channel inserts a token between the last packetold and the
first packetnew.

– A switch input channel routes packets according to Rold until the token is
processed, and thereafter routes packets according to Rnew . After having
processed the token, an input channel must only forward packets to output
channels that have transmitted the token.

– A switch output channel, co, must not transmit the token until all input
channels, ci, for which dependencies2 exist according to Rold from ci to co,
have processed the token.

For further details, see [20].

1 A topology agnostic routing algorithm does not presuppose a particular topology.
2 If a packet may use a channel cb immediately after a channel ca there is a channel

dependency from ca to cb.

RecTOR: A New and Efficient Method 1055

3 TOR versus Up*/Down*

Both TOR and Up*/Down* assign up and down directions to all the links in the
network to form a directed acyclic graph (DAG) rooted in one of the switches.3

The path selection is, however, different for the two algorithms.
According to [23] deadlocks cannot form if cyclic channel dependencies are pre-

vented. Up*/Down* breaks all cycles by prohibiting the turn from a down-link to
an up-link. VCs are not required. With Up*/Down* all other switches/endnodes4

can reach the root (the only switch with no outgoing up-links) following one or
more up-links, and the root can reach all other switches/endnodes following one
or more down-links.

TOR selects paths without regard to the underlying DAG. For TOR, the
purpose of the DAG is solely to identify the breakpoints – the turns where
the cycles must be broken. As for Up*/Down*, the breakpoints are the down-
link to up-link turns. TOR prevents deadlock by requiring that when a packet
crosses a breakpoint (traverses from a down-link to an up-link), it makes a
transition to the next higher VC. Thus, TOR supports a flexible shortest path
routing, and can achieve significantly higher performance than Up*/Down*
achieves. A main drawback of Up*/Down* is that the area around the root
tends to become a hotspot. In addition, a legal route from one switch/endnode to
another may be significantly longer than the shortest path in the physical
topology.

For further details on TOR and Up*/Down*, see [22] and [3], respectively.

4 RecTOR

RecTOR is based on the following observations concerning TOR. During the
operation of a network, changes in the topology can be reflected in the DAG.
TOR selects paths independently of the underlying DAG (which sole purpose
is to define the breakpoints that decide VC-transitions). Thus, after a topol-
ogy change, a set of new paths that restores connectivity can always be found,
provided that the topology is still physically connected.

Assume that Gold and Gnew are the DAGs that apply before and after a
topology change, respectively. In order to ensure that packets routed according
to an old and new routing function can coexist in the network without causing
deadlock, RecTOR makes only one assumption on the evolution of the DAG:
No breakpoint must be moved during the transition from Gold to Gnew. Thus,
an edge that persists from Gold to Gnew must keep its (up or down) direction.
However, breakpoints (and turns in general) can be removed or added as vertexes
and edges are removed or added, respectively.

Assume that TOR is used, and that a deadlock-free routing function, Rold

(which includes VC-transitions according to Gold), applies when an unplanned

3 Links and switches are represented in the DAG by edges and vertexes, respectively.
4 An endnode is a compute node that generates and processes packets.

1056 Å.G. Solheim, O. Lysne, and T. Skeie

or planned topology change occurs.5 Then, RecTOR prescribes the following
procedure to reconfigure the network:

1. Update the underlying DAG to reflect the change in topology. If a link
or switch was removed, simply remove the corresponding edge or vertex
(including its connecting edges), respectively. If a link or switch was added,
add an edge or vertex (including its connecting edges), respectively. Avoid
the introduction of cycles when assigning directions to newly added edges
(see the Up*/Down* method).

2. Let TOR calculate a new deadlock-free routing function, Rnew as follows:
First, select a new set of paths which restore connectivity. Then, for each
path, insert a transition to the next higher VC wherever the path crosses a
breakpoint in Gnew.

3. Rnew can be applied instantly – packets routed according to Rold and Rnew

(or both) can coexist in the network without causing deadlock.

With regard to step 3 above, there is a risk of a packet looping if the packet
are routed according to Rold in some of the switches and Rnew in others (which
could happen if the system uses distributed routing). Such looping could cause
packet loss, as a packet that has reached the highest available VC and still
needs to make another VC-transition must be rejected. A simple approach that
prevents this problem implies that each switch holds routing tables for both
Rold and Rnew during the reconfiguration, and that each packet is tagged to
indicate which of the routing functions should be used. However, a better solution
could be adopted from the Internet research community, where several studies
(e.g. [24]) have focused on preventing packets from looping during the update
of routing tables. Like e.g. Double Scheme, RecTOR cannot guarantee in-order
packet delivery during reconfiguration.

As deadlock avoidance is an inherent challenge in dynamic reconfiguration,
we include and prove Lemma 1.

Lemma 1. RecTOR provides deadlock-free reconfiguration.

Proof. The proof is by contradiction. Assume that a deadlocked set of packets,
Sd, is a set of packets where none of the packets can advance before another
packet in the set advances. Assume also that a reconfiguration from Rold to
Rnew, where RecTOR is applied, results in some non-empty Sd.

Both Rold and Rnew are, by themselves, deadlock-free. Thus, Sd must include
at least one packet that is taking a turn which is present in both Gold and
Gnew, and which is either a breakpoint in Gold and not a breakpoint in Gnew ,
or a breakpoint in Gnew and not a breakpoint in Gold. In either case some
breakpoint must have been moved during the transition from Gold to Gnew ,
which contradicts the premise of RecTOR. ��
5 The change detection mechanism is outside the scope of RecTOR.

RecTOR: A New and Efficient Method 1057

5 Experiment Setup

In order to compare the performance of RecTOR with the performance of OR, we
conducted a number of experiments where a link fault and, subsequently, a switch
fault were introduced and handled by reconfiguration. OR can be used between
any pair of routing algorithms, and we consider two different alternatives. In
the first case (referred to as ORTOR), TOR is used. In the second case (referred
to as ORDOR/UD), DOR is used initially (for the fault-free topology) whereas
Up*/Down* is used after the first network component has failed.

Whereas TOR and Up*/Down* are topology agnostic routing algorithms,
DOR only works for fault-free meshes and tori. DOR avoids deadlock by first
routing a packet in the X-dimension until the offset in this dimension is zero.
Thereafter the packet is routed in the Y-dimension until it reaches its destination.
For a torus topology, DOR needs two VCs for deadlock avoidance [23].

TOR can calculate shortest path routes in a number of different ways. In these
experiments an out-port in the X-dimension is preferred over an out-port in the
Y-dimension in every intermediate switch. For a fault-free mesh or torus, this
gives similar paths as DOR, although the VC-use is different for many of the
paths. In these experiments, the switch in the upper left corner of the mesh is
the root of the Up*/Down* graph.

The simulator model was developed in the J-Sim [25] environment. We con-
sider both mesh and torus topologies6 of size 8 × 8 and 16 × 16. In our exper-
iments one endnode is connected to every switch. The packet size is 256 bytes,
and both an ingress and egress buffer of a switch port can hold 6 packets per VC.
The model applies virtual cut-through switching and credit-based flow control. A
transmission queue in an endnode has space for 12 packets per VC, and overflows
when the network cannot deliver packets at the rate they are injected. Packets
are immediately removed upon reaching their destination endnode. The number
of VCs available is 4. Each routing algorithm, TOR, DOR or Up*/Down*, evenly
distributes the paths among the available VCs in order to achieve a balanced
load.

A transparent synthetic workload model is applied. For the packet injection
rate a normal approximation of the Poisson distribution is used. We study
two different traffic patterns: A uniform destination address distribution, and
a hotspot traffic pattern where 80% of the packets are destined for a randomly
selected hotspot node whereas the remaining 20% of the packets are uniformly
distributed.

In order to ensure relevant load levels for the experiments, we initially iden-
tified the saturation point (the load level where the transmission queues of the
endnodes start to overflow) for each of the three routing algorithms.

For uniform traffic, Up*/Down* has the lowest saturation point (Satmin) of
the three routing algorithms, whereas the highest saturation point (Satmax) is
achieved for TOR and DOR for the mesh topology, and for DOR for the torus

6 Among the upper ten supercomputers in the Top500 list [26], both mesh and torus
topologies are represented.

1058 Å.G. Solheim, O. Lysne, and T. Skeie

topology. We selected three load levels of focus, where the lowest, medium and
highest load levels correspond to 90% of Satmin, the center between Satmin and
Satmax, and 110% of Satmax, respectively.

For hotspot traffic, the saturation point (Sat) is the same for all three routing
algorithms (as the saturation point is mainly decided by the congestion that
results from 80% of the traffic being directed towards one of the endnodes). Two
load levels were in focus, where the lowest and highest level correspond to 80%
and 110%, respectively, of Sat.

In order to remove initial transients, data collection is not started for an
experiment until 50000 cycles have been run (time is measured in cycles – an
abstract time unit)7. Data are collected for 100000 cycles. A random link (port)
fault occurs after 6000 cycles and a random switch fault occurs after 28000 cycles.
In each case a reconfiguration process is triggered.

Using OR, a traffic source (endnode) injects a token to indicate that no pack-
ets routed according to Rold will follow. The change-over from one routing func-
tion to another could be fully synchronized if all traffic sources performed the
change simultaneously. It is well known that, due to such factors as clock skew
or reception of routing or control information at different times, such synchro-
nization is hard to achieve. In order to compare RecTOR and OR for different
degrees of synchronization, we use source routing and let the endnodes perform
the change-over from Rold to Rnew as follows. When all endnodes have been
notified to initialize reconfiguration, each endnode draws its change-over time,
tchange, from a normal distribution with a mean of 500 cycles and where the
standard deviation is a simulation parameter, changestd. An endnode starts a
timer according to tchange and continues injecting packetsold until the timer ex-
pires, then, if OR is used, injects the token, and thereafter injects packetsnew.
The higher changestd is, the more unsynchronized the change of routing function
becomes. In these experiments, changestd assumes the values 0 and 100, where
the former value represents the fully synchronized case.

We consider the metrics Thrt and Latt which result from the division of the
data collection period into 500 time intervals, each with a duration of 200 cycles.
For a time interval int, Thrt is the number of packets that are generated by any
endnode in int and that subsequently reach their destination endnode. Latt for
int is the average latency of all packets that are generated by any endnode in int
and that subsequently reach their destination endnode. The latency for a single
packet is the time that elapses from when the packet is generated and injected
into a transmission queue in the source endnode until the packet is received by
the destination endnode. For each int the values for Thrt and Latt are plotted in
the middle of the interval, whereas in the same plots the start and end times of
the reconfiguration period are plotted without regard to interval borders. For OR
the reconfiguration starts when the first token is injected and ends when the last
token is received by an endnode. For RecTOR the reconfiguration starts when
the first endnode starts using the new routing function and ends when the last
packet that belonged to the old routing function are removed from the network.

7 E.g. a link speed of 10 Gbps gives a simulator cycle length of 102.4 ns.

RecTOR: A New and Efficient Method 1059

The values presented are the mean values that result from 30 repetitions of each
experiment. Each repetition is initialized by a different seed and applies a unique
link (port) fault, switch fault, and hotspot node (in the case of hotspot traffic).

6 Results

Due to space limitations we could not display the plots from all our experiments.
Therefore, a set of representative plots was selected and included.

For the uniform traffic pattern, Figure 1 compares RecTOR with ORTOR and
ORDOR/UD for a 8×8 mesh under low traffic load and a 8×8 torus under medium
traffic load. The vertical lines depict the start and end times of reconfiguration
for each of the three methods (some of the lines are plotted on top of each other).
The reduction of Thrt seen at times 6000 and 28000 for all three methods is due
to packet loss in the faulty link and switch, respectively.

Figures 1(a) and 1(b) show that, after the first reconfiguration, RecTOR and
ORTOR achieve a significantly higher Thrt than ORDOR/UD does. Likewise,
Figures 1(c) and 1(d) show that, after the first reconfiguration, RecTOR and
ORTOR achieve a significantly lower Latt than ORDOR/UD does. The low load
applied in Figures 1(a) and 1(c) is below saturation for Up*/Down* in the fault-
free case. Nevertheless, the fault of only a single link causes a significant perfor-
mance degradation for Up*/Down* when compared to TOR.

Using DOR for a fault-free mesh or torus, and then using Up*/Down* to cal-
culate new routes as a fault occurs, is a relatively common approach.8 However,
at least for a traffic pattern that resembles uniform, Figure 1 clearly demon-
strates the drawbacks of such an approach. RecTOR assumes TOR, which not
only achieves better performance than Up*/Down* after a fault has occurred,
but also matches the performance of DOR in the fault-free case. Furthermore,
using only one routing algorithm simplifies the implementation.

OR often causes decreased throughput and increased latency during the re-
configuration as a number of packetsnew are held back by the token propagation
procedure. For ORTOR the characteristic troughs of the Thrt curves and crests
of the Latt curves were hardly noticeable in Figure 1 due to the large scale of
these plots. Figure 2, on the other hand, clearly shows the advantages of Rec-
TOR over ORTOR in the case of uniform traffic. ORDOR/UD is not included
as we have already concluded from Figure 1 that its performance is inferior to
RecTOR and ORTOR.

For a 16× 16 mesh, Figure 2(a) shows Thrt for medium load and Figure 2(c)
shows Latt for low load. For a 16×16 torus, Figure 2(b) shows Thrt for high load
and Figure 2(d) shows Latt for medium load. All of these plots show that, for
ORTOR, the Thrt and Latt curves have significant troughs and crests, respec-
tively. For RecTOR, on the other hand, there are no troughs in the Thrt curves
nor crests in the Latt curves, as no restrictions are placed on the forwarding of
packets during reconfiguration. The decreased throughput and increased latency
observed for RecTOR after a fault are merely due to the reduced capacity of
8 Remember that DOR only works for fault-free meshes and tori.

1060 Å.G. Solheim, O. Lysne, and T. Skeie

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5000 10000 15000 20000 25000 30000 35000 40000

R
ec

ei
ve

d
pa

ck
et

s

Packet generation time (cycles)

rc ORDOR/UD
rc ORTOR
rc RecTOR
ORDOR/UD
ORTOR
RecTOR

(a) Thrt, 8 × 8 mesh, low load.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5000 10000 15000 20000 25000 30000 35000 40000

R
ec

ei
ve

d
pa

ck
et

s

Packet generation time (cycles)

rc ORDOR/UD
rc ORTOR
rc RecTOR
ORDOR/UD
ORTOR
RecTOR

(b) Thrt, 8 × 8 torus, medium load.

 0

 500

 1000

 1500

 2000

 0 5000 10000 15000 20000 25000 30000 35000 40000

La
te

nc
y

(c
yc

le
s)

Packet generation time (cycles)

rc ORDOR/UD
rc ORTOR
rc RecTOR
ORDOR/UD
ORTOR
RecTOR

(c) Latt, 8 × 8 mesh, low load.

 0

 500

 1000

 1500

 2000

 0 5000 10000 15000 20000 25000 30000 35000 40000

La
te

nc
y

(c
yc

le
s)

Packet generation time (cycles)

rc ORDOR/UD
rc ORTOR
rc RecTOR
ORDOR/UD
ORTOR
RecTOR

(d) Latt, 8 × 8 torus, medium load.

Fig. 1. Thrt, Latt, and start/end times of reconfiguration (rc) for RecTOR, ORTOR

and ORDOR/UD (uniform traffic, synchronized change-over to Rnew)

the network when packets can no longer be forwarded across the faulty link or
switch (naturally, this effect is also observed for ORTOR).

RecTOR performs equally well in the case of a less synchronized change-over
(changestd = 100) from Rold to Rnew as in the case of a fully synchronized
change-over (changestd = 0). Therefore, Figure 2 includes only the less synchro-
nized case for RecTOR, whereas both the fully and less synchronized cases are
included for ORTOR. Figure 2(b) shows that, for a traffic load well above sat-
uration, the performance of ORTOR does not depend on how synchronized the
change-over from Rold to Rnew is. For low and medium traffic load, on the other
hand, Figures 2(a), 2(c) and 2(d) demonstrate that, for ORTOR, the troughs of
the Thrt curves grow deeper, and the crests of the Latt curves grow higher as
the change-over from Rold to Rnew gets less synchronized.

In summary, Figure 2 shows that RecTOR provides a better network service
to an application with a uniform communication pattern than OR does, and
that the advantages become even more apparent if the change-over from Rold to
Rnew is not fully synchronized.

For the hotspot traffic pattern, Figure 3 compares RecTOR with ORTOR and
ORDOR/UD. Figures 3(a) and 3(b) show Latt for a 16×16 torus under low traf-
fic load. Figure 3(a) shows a fully synchronized change-over from Rold to Rnew ,
whereas Figure 3(b) shows the less synchronized change-over. For RecTOR, the

RecTOR: A New and Efficient Method 1061

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5000 10000 15000 20000 25000 30000 35000 40000

R
ec

ei
ve

d
pa

ck
et

s

Packet generation time (cycles)

rc ORTOR (u)
rc RecTOR (u)
ORTOR (s)
ORTOR (u)
RecTOR (u)

(a) Thrt, 16 × 16 mesh, medium load.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5000 10000 15000 20000 25000 30000 35000 40000

R
ec

ei
ve

d
pa

ck
et

s

Packet generation time (cycles)

rc ORTOR (u)
rc RecTOR (u)
ORTOR (s)
ORTOR (u)
RecTOR (u)

(b) Thrt, 16 × 16 torus, high load.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5000 10000 15000 20000 25000 30000 35000 40000

La
te

nc
y

(c
yc

le
s)

Packet generation time (cycles)

rc ORTOR (u)
rc RecTOR (u)
ORTOR (s)
ORTOR (u)
RecTOR (u)

(c) Latt, 16 × 16 mesh, low load.

 0

 100

 200

 300

 400

 500

 600

 700

 0 5000 10000 15000 20000 25000 30000 35000 40000

La
te

nc
y

(c
yc

le
s)

Packet generation time (cycles)

rc ORTOR (u)
rc RecTOR (u)
ORTOR (s)
ORTOR (u)
RecTOR (u)

(d) Latt, 16 × 16 torus, medium load.

Fig. 2. Thrt, Latt, and start/end times of reconfiguration (rc) for RecTOR and ORTOR

under synchronized (s) and unsynchronized (u) change-over to Rnew (uniform traffic)

Latt curves are smooth, without any crests, and, as we already know, the perfor-
mance of RecTOR is independent of how synchronized the change-over to Rnew

is. For ORTOR and ORDOR/UD, on the other hand, the crests of the Latt curves
are pronounced. For both ORTOR and ORDOR/UD the heights of these crests
increase significantly as the change-over to Rnew gets less synchronized. Thus,
as for uniform traffic, the advantages of RecTOR over OR become even more
apparent when the change-over from Rold to Rnew is not fully synchronized.

Figures 3(a) and 3(b) also indicate that after the first reconfiguration, Latt
for ORDOR/UD is higher than for RecTOR and ORTOR. This is due to inferior
performance of Up*/Down* when compared to TOR, as was also demonstrated
for uniform traffic in Figure 1.

For hotspot traffic, the packet throughput is limited due to 80% of the traffic
being directed towards one particular node. This explains that in Figure 3(c),
which shows Thrt for a 8 × 8 mesh under high load, the characteristic troughs
in the Thrt curves for OR are barely visible.9 We believe that the small increase
in Thrt immediately after the start of each reconfiguration in Figure 3(c) is due
to more packets being accepted into the network when the new routes around a

9 For low traffic load, the Thrt curves simply resembled horizontal lines, except for the
packet loss in a faulty link or switch. Therefore, none of these plots were included.

1062 Å.G. Solheim, O. Lysne, and T. Skeie

 0

 100

 200

 300

 400

 500

 0 5000 10000 15000 20000 25000 30000 35000 40000

La
te

nc
y

(c
yc

le
s)

Packet generation time (cycles)

rc ORDOR/UD
rc ORTOR
rc RecTOR
ORDOR/UD
ORTOR
RecTOR

(a) Latt, 16×16 torus, low load, synchro-
nized change-over to Rnew.

 0

 100

 200

 300

 400

 500

 0 5000 10000 15000 20000 25000 30000 35000 40000

La
te

nc
y

(c
yc

le
s)

Packet generation time (cycles)

rc ORDOR/UD
rc ORTOR
rc RecTOR
ORDOR/UD
ORTOR
RecTOR

(b) Latt, 16 × 16 torus, low load, unsyn-
chronized change-over to Rnew.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5000 10000 15000 20000 25000 30000 35000 40000

R
ec

ei
ve

d
pa

ck
et

s

Packet generation time (cycles)

rc ORDOR/UD
rc ORTOR
rc RecTOR
ORDOR/UD
ORTOR
RecTOR

(c) Thrt, 8× 8 mesh, high load, synchro-
nized change-over to Rnew .

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5000 10000 15000 20000 25000 30000 35000 40000

La
te

nc
y

(c
yc

le
s)

Packet generation time (cycles)

rc ORDOR/UD
rc ORTOR
rc RecTOR
ORDOR/UD
ORTOR
RecTOR

(d) Latt, 8 × 8 mesh, high load, synchro-
nized change-over to Rnew .

Fig. 3. Thrt, Latt, and start/end times of reconfiguration (rc) for RecTOR, ORTOR

and ORDOR/UD (hotspot traffic)

faulty link or switch are taken into use. Figure 3(d) shows that such an increase
in Thrt corresponds to an increase in Latt for all three reconfiguration methods.
Figure 3(d) demonstrates that, for a load level above saturation, OR experiences
more fluctuations in Latt than RecTOR does. For ORTOR and ORDOR/UD the
Latt decreases for packetsold injected over a period of time before reconfiguration.
This effect is caused by a number of packetsnew being held back in the switches
during the token propagation procedure (which reduces the network load, and
packetsold thus experience reduced latency). On the other hand, some significant
crests in the Latt curves for ORTOR and ORDOR/UD are also results of the token
propagation procedure. Figures 3(c) and 3(d) represent an extreme scenario (a
heavy hotspot pattern in combination with a workload well above saturation).
However, even in this case, RecTOR supports a more stable network service than
OR does.

7 Conclusion

Existing methods for reconfiguration of an interconnection network have a num-
ber of limitations, such as dependence on deadlock-avoidance mechanisms that

RecTOR: A New and Efficient Method 1063

impose performance penalties; complicated procedures; or dependence on the
Up*/Down* routing algorithm which achieves low performance. Some of the
methods require complex network switches, or are only applicable for distributed
routing systems.

This paper presents RecTOR, a new dynamic reconfiguration method, which
is useful both for source and distributed routing systems, and which does not
require complex network switches. RecTOR is based on a simple principle that,
while ensuring deadlock-freedom, allows packets routed according to an old and a
new routing function to coexist in the network without restrictions. Thus, unlike
e.g. OR, RecTOR does not cause degraded performance during the
reconfiguration.

Our performance evaluation shows that, during the reconfiguration, RecTOR
supports a better network service than OR does, both to applications with uni-
form and hotspot communication patterns. Complete synchronization of the
change-over from an old to a new routing function is hard to achieve (due to such
factors as clock skew or reception of routing or control information at different
times). The simulation results show that the advantages of RecTOR over OR be-
come even more evident as the change-over gets less synchronized. Furthermore,
our results demonstrate the limitations of the common approach that implies
using DOR in a fault-free mesh or torus, and then using Up*/Down* routing
if a fault occurs. Using RecTOR, only one routing algorithm is needed – TOR,
a topology agnostic routing algorithm that not only outperforms Up*/Down*,
but also matches the performance of DOR.

Currently, RecTOR appears as the most efficient reconfiguration method for
systems that accept out-of-order packet delivery and have virtual channels avail-
able for the routing function.

References

1. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks: An Engineering Ap-
proach. Morgan Kaufmann Publishers, San Francisco (2003)

2. Duato, J., Lysne, O., Pang, R., Pinkston, T.M.: Part I: A theory for deadlock-
free dynamic network reconfiguration. IEEE Trans. Parallel and Distributed Sys-
tems 16(5), 412–427 (2005)

3. Schroeder, M.D., et al.: Autonet: A high-speed, self-configuring local area network
using point-to-point links. SRC Research Report 59, Digital Equipment Corpora-
tion (1990)

4. Rodeheffer, T.L., Schroeder, M.D.: Automatic reconfiguration in Autonet. In: 13th
ACM Symp. Operating Systems Principles, pp. 183–197 (1991)

5. Boden, N.J., et al.: Myrinet: A gigabit-per-second local area network. IEEE Mi-
cro. 15(1), 29–36 (1995)

6. Teodosiu, D., et al.: Hardware fault containment in scalable shared-memory mul-
tiprocessors. SIGARCH Computer Architecture News 25(2), 73–84 (1997)

7. Lysne, O., Duato, J.: Fast dynamic reconfiguration in irregular networks. In: Int’l.
Conf. Parallel Processing, pp. 449–458 (2000)

8. Casado, R., Bermúdez, A., Duato, J., Quiles, F.J., Sánchez, J.L.: A protocol for
deadlock-free dynamic reconfiguration in high-speed local area networks. IEEE
Trans. Parallel and Distributed Systems 12(2), 115–132 (2001)

1064 Å.G. Solheim, O. Lysne, and T. Skeie

9. Natchev, N., Avresky, D., Shurbanov, V.: Dynamic reconfiguration in high-speed
computer clusters. In: 3rd Int’l. Conf. Cluster Computing, pp. 380–387 (2001)

10. Pinkston, T.M., Pang, R., Duato, J.: Deadlock-free dynamic reconfiguration
schemes for increased network dependability. IEEE Trans. Parallel and Distributed
Systems 14(8), 780–794 (2003)

11. Lysne, O., Pinkston, T.M., Duato, J.: Part II: A methodology for developing
deadlock-free dynamic network reconfiguration processes. IEEE Trans. Parallel and
Distributed Systems 16(5), 428–443 (2005)

12. Avresky, D., Natchev, N.: Dynamic reconfiguration in computer clusters with ir-
regular topologies in the presence of multiple node and link failures. IEEE Trans.
Computers 54(5), 603–615 (2005)

13. Acosta, J.R., Avresky, D.R.: Dynamic network reconfiguration in presence of mul-
tiple node and link failures using autonomous agents. In: 2005 Int’l. Conf. Collab-
orative Computing: Networking, Applications and Worksharing (2005)

14. Acosta, J.R., Avresky, D.R.: Intelligent dynamic network reconfiguration. In: Int’l.
Parallel and Distributed Processing Symp. (2007)

15. Robles-Gómez, A., Bermúdez, A., Casado, R., Solheim, Å.G.: Deadlock-free dy-
namic network reconfiguration based on close Up*/Down* graphs. In: Luque, E.,
Margalef, T., Beńıtez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 940–949.
Springer, Heidelberg (2008)

16. InfiniBand Trade Association: InfiniBand Architecture Specification v. 1.2.1 (2007),
http://www.infinibandta.org/specs

17. Zafar, B., Pinkston, T.M., Bermúdez, A., Duato, J.: Deadlock-free dynamic recon-
figuration over InfiniBand networks. Int’l. Jrnl. Parallel, Emergent and Distributed
Systems 19(2), 127–143 (2004)

18. Bermúdez, A., Casado, R., Quiles, F.J., Duato, J.: Handling topology changes in
InfiniBand. IEEE Trans. Parallel and Distributed Systems 18(2), 172–185 (2007)

19. Lysne, O., et al.: Simple deadlock-free dynamic network reconfiguration. In: 11th
Int’l. Conf. High Performance Computing, pp. 504–515 (2004)

20. Lysne, O., et al.: An efficient and deadlock-free network reconfiguration protocol.
IEEE Trans. Computers 57(6), 762–779 (2008)

21. Solheim, Å.G., et al.: Efficient and deadlock-free reconfiguration for source routed
networks. In: 9th Worksh. Communication Architecture for Clusters (2009)

22. Sancho, J.C., Robles, A., Flich, J., López, P., Duato, J.: Effective methodology
for deadlock-free minimal routing in InfiniBand networks. In: Int’l. Conf. Parallel
Processing, pp. 409–418 (2002)

23. Dally, W.J., Seitz, C.L.: Deadlock-free message routing in multiprocessor intercon-
nection networks. IEEE Trans. Computers 36(5), 547–553 (1987)

24. Francois, P., Bonaventure, O.: Avoiding transient loops during IGP convergence in
IP networks. In: 24th IEEE INFOCOM, vol. 1, pp. 237–247 (2005)

25. Tyan, H.-Y.: Design, Realization and Evaluation of a Component-Based Compo-
sitional Software Architecture for Network Simulation. PhD thesis, Ohio State
University (2002)

26. Top 500 project: Top 500 Supercomputer Sites (November 2008),
http://top500.org

http://www.infinibandta.org/specs
http://top500.org

	RecTOR: A New and Efficient Method for Dynamic Network Reconfiguration
	Introduction
	The OR Algorithm
	TOR versus Up*/Down*
	RecTOR
	Experiment Setup
	Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

