
NIC-Assisted Cache-Efficient Receive Stack for
Message Passing over Ethernet

Brice Goglin

INRIA Bordeaux – France
Brice.Goglin@inria.fr

Abstract. High-speed networking in clusters usually relies on advanced
hardware features in the NICs, such as zero-copy. Open-MX is a high-
performance message passing stack designed for regular Ethernet hard-
ware without such capabilities.

We present the addition of multiqueue support in the Open-MX re-
ceive stack so that all incoming packets for the same process are treated
on the same core. We then introduce the idea of binding the target end
process near its dedicated receive queue. This model leads to a more
cache-efficient receive stack for Open-MX. It also proves that very sim-
ple and stateless hardware features may have a significant impact on
message passing performance over Ethernet.

The implementation of this model in a firmware reveals that it may not
be as efficient as some manually tuned micro-benchmarks. But our mul-
tiqueue receive stack generally performs better than the original single
queue stack, especially on large communication patterns where multiple
processes are involved and manual binding is difficult.

1 Introduction

The emergence of 10 gigabit/s Ethernet hardware raised the questions of when
and how the long-awaited convergence with high-speed networks will become
a reality. Ethernet now appears as an interesting networking layer within
local area networks for various protocols such as FCoE [4]. Meanwhile, sev-
eral network vendors that previously focussed on high-performance computing
added interoperability with Ethernet to their hardware, such as Mellanox

ConnectX [3] or Myricom Myri-10G [11]. However, the gap between these
advanced NICs and regular Ethernet NICs remains very large.

Open-MX [6] is a message passing stack implemented on top of the Ether-

net software layer of the Linux kernel. It aims at providing high-performance
communication over any generic Ethernet hardware using the wire specifica-
tions and the application programming interface of Myrinet Express [12]. While
being compatible with any legacy Ethernet NICs, Open-MX suffers from
limited hardware features.

We propose to improve the cache-efficiency of the receive side by extending
the hardware IP multiqueue support to filter Open-MX packets as well. Such
a stateless feature requires very little computing power and software support

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 1065–1077, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

1066 B. Goglin

compared to the existing complex and statefull features such as zero-copy or
TOE (TCP Offload Engine). Parallelizing the stack is known to be important
on modern machines [16]. We are looking at it in the context of binding the
whole packet processing to the same core, from the bottom interrupt handler up
to the application.

The remaining of this paper is organized as follows. We present Open-MX,
its possible cache-inefficiency problems, and our objectives and motivations in
Section 2. Section 3 describes our proposal to combine the multiqueue extension
in the Myri-10G firmware and its corresponding support in Open-MX so as to
we build an automatic binding facility for both the receive handler in the driver
and the target application. Section 4 presents a performance evaluation which
shows that our model achieves satisfying performance for micro-benchmarks,
reduces the overall cache miss rate, and improves large communication patterns.
Before concluding, related works are discussed in Section 5.

2 Background and Motivations

In this section, we briefly describe the Open-MX stack before discussing how
the cache is involved on the receive side. We then present our motivation to add
some Open-MX specific support in the NIC and detail our objectives with this
implementation.

2.1 Design of the Open-MX Stack

The Open-MX stack aims at providing high-performance message passing over
any generic Ethernet hardware. It exposes the Myrinet Express API (MX) to
user-space applications. Many existing middleware projects such as Open MPI [5]
or PVFS2 [13] run successfully unmodified on top of it.

Open-MX was first designed as an emulated MX firmware in a Linux kernel
module [6]. This way, legacy applications built for MX benefit from the same
abilities without needing the Myricom hardware or the native MX software
stack (see Figure 1). However, the features that are usually implemented in the
hardware of high-speed networks are obviously prone to performance issues when
emulated in software. Indeed, portability to any Ethernet hardware requires
the use of a common very simple low-level programming interface to access
drivers and NICs.

MX Library Open−MX Library

MX Driver Open−MX Driver

Generic Ethernet Layer

Ethernet Driver

Ethernet Board

O
S

 B
yp

ass

Application

Ethernet Wires
MX Firmware

Fig. 1. Design of the native MX and generic Open-MX software stacks

NIC-Assisted Cache-Efficient Receive Stack 1067

2.2 Cache Effects in the Open-MX Receive Stack

Reducing cache effects in the Open-MX stack requires to ensure that data struc-
tures are not used concurrently by multiple cores. Since the send side is mostly
driven by the application, the whole send stack is executed by the same core. The
receive side is however much more complex. Open-MX processes incoming pack-
ets in its Receive handler which is invoked when the Ethernet NIC raises an
interrupt. The receive handler first acquires the descriptor of the communication
channel (endpoint). Then, if the packet is part of a eager message (≤ 32 kB), the
data and corresponding event are written into a ring shared with the user-space
library. Finally, the library will copy the data back to the application buffers
(see Figure 2).

Copy
event+data

Copy data
Update

Endpoint

Pull handle

User

Kernel

Library

Acquire

Receive
handler

Pull packetEager packet Receive
handler

Copy data

Application

Shared Ring

Fig. 2. Summary of resource accesses and data transfers from the Open-MX receive
handler in the driver up to the application buffers

If the packet is part of a large message (after a rendezvous), the corresponding
Pull handle is acquired and updated. Then, the data is copied into the associated
receive buffer (Figure 2). An event is raised at the user-space level only when the
last packet is received. This copy may be offloaded to Intel I/O Acceleration
Technology (I/OAT) DMA engine hardware if available [7].

The current Open-MX receive stack will most of the times receive IRQ (In-
terrupt ReQuest) on all cores since the hardware chipset usually distributes them
in a round-robin manner (see Figure 3(a)). It causes many cache-line bounces
between cores that access the same resources. It explains why processing all
packets for the same endpoint on the same core will improve the cache-efficiency.
Indeed, there would be no more concurrent accesses to the endpoint structure
or shared ring in the driver. Additionally, all eager packets will also benefit
from having the user-space library run on the same core since a shared ring is
involved.

Large message (Pull packets) will also benefit from having their handle ac-
cessed by a single core. But, it is actually guaranteed by the fact that each handle
is used by a single endpoint. Moreover, running the application on the same core
will reduce cache effects when accessing the received data (except if the copy
was offloaded to the I/OAT hardware which bypasses the cache).

1068 B. Goglin

2.3 Objectives and Motivations

A simple way to avoid concurrent accesses in the driver is to bind the inter-
rupt to a single core. However, the chosen core will be overloaded, causing an
availability imbalance between cores. Moreover, all processes running on other
cores will suffer from cache-line bounces in their shared ring since they would
compete with the chosen core. In the end, this solution may only be interesting
for benchmarking purposes with a single process per node (see Section 4).

High-speed networks do not suffer from such cache-related problems since
events and data are directly deposited in the user-space application context. It
is one of the important features that legacy Ethernet hardware lacks. The host
only processes incoming packets when the NIC raises an interrupt. Fortunately,
some Ethernet-specific hardware optimizations have been developed in the
context of IP networks. The study of cache-efficiency lead to the emergence of
hardware multiqueue support. These NICs have the ability to split the incoming
packet flow into several queues [17] with different interrupts. By filtering packets
depending on their IP connection and binding each queue to a single core, it is
possible to ensure that all packets of a connection will be processed by the same
core. It prevents many cache-line bounces in the host receive stack.

We propose in this article to study the addition of Open-MX-aware multi-
queue support. We expect to improve the cache-efficiency of our receive stack
by guarantying that all packets going to the same endpoint are processed on
the same core. To improve performance even more, we then propose to bind the
target user-process to the core where the endpoint queue is processed. It will
make the whole Open-MX receive stack much more cache-friendly. This idea
goes further than existing IP implementations where the cache-efficiency does
not go up to the application.

3 Design of a Cache-Friendly Open-MX Receive Stack

We now detail our design and implementation of a cache-friendly receive stack in
Open-MX thanks to the addition of dedicated multiqueue support in the NIC

and the corresponding process binding facility.

3.1 Open-MX-Aware Multiqueue Ethernet Support

Hardware multiqueue support is based on the driver allocating one MSI-X in-
terrupt vector (similar to an IRQ line) and one ring per receive queue. Then, for
each incoming packet, the NIC decides which receive queue should be used [17].
The IP traffic is dispatched into multiple queues by hashing each connection
into a queue index.

The Open-MX multiqueue support is actually very simple because hashing
its packets is easy. Indeed, the same communication channel (endpoint) is used
to communicate with many peers, so only the local endpoint identifier has to be
hashed. Therefore, the NIC only has to convert the 8-bit destination endpoint

NIC-Assisted Cache-Efficient Receive Stack 1069

Core#1 Core#2 Core#3Core#0

Handler
Interrupt

Application

Open−MX Library

Kernel

Hardware

User−space

Event+Data

Ethernet Board
Endpoint #2
Packet for

IRQ Round−Robin

(a) Round-Robin Single-Interrupt: the
interrupt goes to any core while the ap-
plication may run somewhere else.

Driver

Core#1 Core#2 Core#3Core#0

Ethernet Board
Packet Filtering
Rx Queue #2

Application

Handler
Interrupt

Event+Data

User−space

Kernel

Hardware
MSI−X#2 to Core#2

Endpoint #2
Packet for

Open−MX Library Binding
Queue

Retrieve

(b) Open-MX-aware Multiqueue: the NIC
raises the MSI-X interrupt corresponding
to the core where the application runs.

Fig. 3. Path from the NIC interrupt up to the application receiving the event and
data

identifier into a queue index. It is much more simple than hashing IP traffic where
many connection parameters (source and destination, port and address) have to
be involved in the hash function. This model is summarized in Figure 3(b). The
next step towards a cache-friendly receive stack is to bind each process to the
core which handles the receive queue of its endpoint.

3.2 Multiqueue-Aware Process Binding

Now that the receive handler is guaranteed to run on the same core for all packets
of the same endpoint, we discuss how to have the application run there as well.
One solution would be to bind the receive queue to the current core when an
endpoint is open. However, the binding of all queues has to be managed globally
so that the multiqueue IP is not disturbed by a load imbalance between cores.

We have chosen the opposite solution: keep receive queues bound as usual (one
queue per core) and make Open-MX applications migrate on the right core when
opening an endpoint. Since most high-performance computing applications place
one process per core, and since most MPI implementations use a single endpoint
per process, we expect each core to be used by a single endpoint. In the end,
each receive queue will actually be used by a single endpoint as well. It makes
the whole model very simple.

3.3 Implementation

We implemented this model in the Open-MX stack with Myricom Myri-10G

NICs as an experimentation hardware. We have chosen this board because it is
one of the few NICs with multiqueue receive support. It also enables comparisons
with the MX stack which may run on the same hardware (with a different
firmware and software stack that was designed for MPI).

We implemented the proposed modification in the myri10ge firmware by
adding our specific packet hashing. It decodes native Open-MX packet headers

1070 B. Goglin

to find out the destination endpoint number. Once the Ethernet driver has
been setup with one receive queue per core as usual, each endpoint packet flow
is sent to a single core.

Meanwhile, we added to the myri10ge driver a routine that returns the MSI-X

interrupt vector that will be used for each Open-MX endpoint. When Open-MX

attaches an interface whose driver exports such a routine, it gathers all interrupt
affinities (the binding of the receive queues). Then, it provides the Open-MX

user-space library with binding hints when it opens an endpoint. Applications
are thus automatically migrated onto the core that will process their packets. It
makes the whole stack more cache-friendly, as described on Figure 3(b).

4 Performance Evaluation

We now present a performance evaluation of our model. After describing our
experimentation platform, we will detail micro-benchmarks and application-level
performance.

4.1 Experimentation Platform

Our experimentation platform is composed of 2 machines with 2 Intel Xeon

E5345 quad-core Clovertown processors (2.33 GHz). These processors are based
on 2 dual-core subchips with a shared L2 cache as described in Figure 4. It
implies 4 possible processor/interrupt bindings : on the same core (SC), on a
core sharing a cache (S$), on another core of the same processor (SP), and on
another processor (OP).

Core
#0

L2 Cache

#2

L2 Cache

#4 #6

4MB Shared 4MB Shared

Processor #0

L2 Cache

#1 #3

L2 Cache

#5 #7

4MB Shared 4MB Shared

Processor #1

Same
Processor

(SP)
Processor

(OP)

Other

Front Side Bus

(SC)
Core
Same Shared

Cache
(S$)Core #0

If IRQ on

Fig. 4. Processors and caches in the experimentation platform (OS-numbered)

These machines are connected with Myri-10G interfaces running in Ether-

net mode with our modified myri10ge firmware and driver. We use Open MPI

1.2.6 [5] on top of Open-MX 0.9.2 with Linux kernel 2.6.26.

4.2 Impact of Binding on Micro-Benchmarks

Table 1 presents the latency and throughput of Intel MPI Benchmark [10]
Pingpong depending on the process and interrupt binding. It first shows that

NIC-Assisted Cache-Efficient Receive Stack 1071

Table 1. IMB Pingpong performance depending on process and IRQ binding

Metric Binding SC S$ SP OP

0byte latency
Round-Robin Single IRQ � 11.4 μs
Single IRQ on core #0 10.96 9.34 10.32 10.25

Multiqueue 11.71 10.10 11.09 11.25

4MB throughput
Round-Robin Single IRQ � 646 MiB/s
Single IRQ on core #0 719 723 721 714

Multiqueue 703 707 706 697

4MB throughput (I/OAT)
Round-Robin Single IRQ � 905 MiB/s
Single IRQ on core #0 1056 1059 1048 1026

Multiqueue 955 965 948 938

the original model (with a single interrupt dispatched to all cores in a round-
robin manner) is slower than any other model, due to cache-line bounces. When
binding the single interrupt to a single core, the best performance is achieved
when the process and interrupt handler share a cache. Indeed, this case re-
duces the overall latency thanks to cache hits in the receive stack, while it pre-
vents the user-space library and interrupt handler from competing for the same
core.

Multiqueue support achieves satisfying performance, but remains a bit slower
than optimally bound single interrupt. It is related to the multiqueue implemen-
tation requiring more work in the NIC than the single interrupt firmware.

4.3 Idle Core Avoidance

The above results assumed that one process was running on each core even if
only two of them were actually involved in the MPI communication. This setup
has the advantage of keeping all cores busy. However, it may be far from the
behavior of real applications where for instance disk I/O may put some processes
to sleep and cause some cores to become idle. If an interrupt is raised onto such
an idle core, it will have to wakeup before processing the packet. On modern
processors, this wakeup overhead is several microseconds, causing the overall
latency to increase significantly.

To study this problem, we ran the previous experiment with only one commu-
nicating process per node, which means 7 out of 8 cores are idle. When interrupts
are not bound to the right core , it increases the latency from 11 up to 15-20 μs
and reduces the throughput by roughly 20 %.

This result is another justification of our idea to bind the process to the core
that runs its receive queue. Indeed, if a MPI application is waiting for a message,
the MPI implementation will usually busy poll the network. Its core will thus not
enter any sleeping state. By binding the receive queue interrupt and the application
to the same core,we guarantee that this busy polling corewill be the one processing
the incoming packet in the driver. It will be able to process it immediately, causing
the observed latency to be much lower. All other cores that may be sleeping during

1072 B. Goglin

disk I/O will not be disturbed by packet processing for unrelated endpoints. This
result may even reduce the overall power consumption of the machine.

4.4 Cache Misses

Table 2 presents the percentage of cache misses observed with PAPI [2] during a
ping-pong depending on interrupt and process binding. Only L2 cache accesses
are presented since the impact on L1 accesses appears to be lower.

Table 2. L2 cache misses (Kernel+User) during a ping-pong

Length Round-Robin IRQ IRQ on S$ IRQ on SC
0B 29.80 %+13.79 % 29.70 %+8.34 % 11.47 %+0.13 %
128B 26.80 %+17.90 % 25.06 %+23.05 % 14.15 %+0.51 %
32 kB 28.77 %+17.71 % 23.17 %+29.32 % 24.49 %+22.56 %
1MB (I/OAT) 27.7 %+6.28 % 36.9 %+7.97 % 25.20 %+5.96 %

The table first shows that the cache miss rate is dramatically reduced for
small messages thanks to our multiqueue support. Running the receive handler
(the kernel part of the stack) always on the same core divides cache misses in
the kernel by 2. Binding the target application (the user part of the stack) to
the same core reduces user-space cache misses by a factor of up to 100.

Cache misses are not improved for 32 kB message communication. We expect
this behavior to be related to many copies being involved on the receive path. It
causes too many cache pollution, which prevents our cache efficiency from being
useful.

Very large messages with I/OAT copy offload do not involve any data copy
in the receive path. Cache misses are thus mostly related to concurrent ac-
cesses to the endpoint and pull handles in the driver. We observe a slightly
decreased cache miss rate thanks to proper binding. But the overall rate re-
mains high, likely because it involves some code-paths outside of the Open-MX

receive stack (rendezvous handshake, send stack, ...) which are expensive for
large messages.

4.5 Collective Communication

After proving that our design improves cache-efficiency without strongly dis-
turbing micro-benchmark performance we now focus on complex communication
patterns by first looking at collective operations. We ran IMB Alltoall be-
tween our nodes with one process per core. Figure 5 presents the execution time
compared to the native MX stack, depending on interrupt and receive queue
binding. It shows that using a single receive queue results in worse performance
than our multiqueue support. As expected, binding this single interrupt to a
single core decreases the performance as soon as the message size increases since
the load on this core becomes the limiting factor.

NIC-Assisted Cache-Efficient Receive Stack 1073

 100

 150

 200

 250

 300

 350

 400

 450

16B 256B 4kB 64kB 1MB

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

 (
%

)
IM

B
 A

llt
o

a
ll

b
e

tw
e

e
n

 2
 n

o
d

e
s
 w

it
h

 8
 c

o
re

s

Message size

Open-MX - Round-Robin Single IRQ
Open-MX - Single IRQ on core #0

Open-MX - Multiqueue
Open-MX + I/OAT - Multiqueue

Native MX

Fig. 5. IMB Alltoall relative execution time depending on interrupt binding and
multiqueue support, compared with the native MX stack

When multiqueue support is enabled, the overall Alltoall performance is
on average 1.3 better. It now reaches less than 150 % of the native MX stack
execution time for very large messages when I/OAT copy offload is enabled.
Moreover, our implementation is even able to outperform MX near 4 kB message
sizes1.

This result reveals that our implementation achieves its biggest improvement
when the communication pattern becomes larger and more complex (collective
operation with many local processes). We think it is caused by such patterns
requiring more data transfer within the host and thus making cache-efficiency
more important.

4.6 Application-Level Performance

Table 3 presents the execution time of some NAS Parallel Benchmarks [1] be-
tween our two 8-core hosts. Most programs show a few percents performance
improvement thanks to our work. This impact is limited by the fact that these
applications are not highly communication intensive. IS (which performs many
large message communications) shows an impressive speedup (8.5 for class B,
2.6 for class C). Thanks to our multiqueue support, IS is now even faster on
Open-MX than on MX. We feel that such a huge speedup cannot be only re-
lated to the efficiency of our new implementation. It is probably also caused by
poor performance of the initial single-queue model for some reason.

It is again worth noticing that using a single interrupt bound to a single core
sometimes decreases performance. As explained earlier, this configuration should
only be preferred for micro-benchmarking with very few processes per node.
1 Open-MX mimics MX behavior near 4 kB. This message size is a good compromise

between smaller sizes (where the big Ethernet latency matters) and larger messages
(where intensive memory copies may limit performance).

1074 B. Goglin

Table 3. NAS Parallel Benchmark execution time and improvement

Single IRQ Single IRQ Multiqueue Performance MX
Round-Robin on Single core Improvement

cg.B.16 34.62 s 34.32 s 33.68 s +2.8 % 32.23 s
mg.B.16 4.14 s 4.19 s 4.02 s +2.9 % 3.93 s
ft.B.16 22.80 s 23.06 s 21.34 s +6.8 % 19.61 s
is.B.16 11.84 s 10.83 s 1.25 s ×8.5 1.33 s
is.C.16 14.69 s 14.17 s 5.62 s ×2.6 6.30 s

5 Related Works

High-performance communication in clusters heavily relies on specific features
in the networking hardware. However, they are usually very different from the
multiqueue support that we presented in this paper. The most famous hardware
feature for HPC remains zero-copy support. It has also been added to some
Ethernet-based message passing stacks, for instance by relying on RDMA-
enabled hardware and drivers, such as iWarp [14]. This strategy achieves a
high throughput for large messages. But it requires complex modifications of the
operating system (since the application must be able to provide receive buffers
to the NIC) and of the NIC (which decides which buffer should be used when
a new packet arrives).

Nevertheless, several other important features are still only available in HPC
hardware, for instance application-directed polling for incoming packets. Indeed,
high-speed network NICs have the ability to deposit events in user-space buffers
where the application may poll. This innovation helps reducing the overall com-
munication latency, but once again it requires complex hardware support. Reg-
ular Ethernet hardware does not provide such features since it relies on a
interrupt-driven model. The host processes incoming packets only when the NIC

raises an interrupt. It prevents applications from polling, and implies poor cache-
efficiency unless proper binding is used. Our implementation solves this problem
by binding the whole receive stack properly.

Several Ethernet-specific hardware optimizations are widely used, but they
were not designed for HPC. Advanced NICs now enable the offload of TCP frag-
mentation/reassembly (TSO and LRO) to decrease the packet rate in the host [8].
But this work does not apply to message based protocols such as Open-MX. An-
other famous recent innovation is multiqueue support [17]. This packet filtering
facility in the NIC enables interesting receive performance improvement for IP

thanks to better cache-efficiency in the host. The emerging area where multiqueue
support is greatly appreciated is virtualization since each queue may be bound to
a virtual machine, causing packet flows to different VMs to be processed indepen-
dently [15]. We adapted this hardware multiqueue support to HPC and extended
it further by adding the binding of the corresponding target application. This last
idea is, to the best of our knowledge, not used by anypopular message passing stack
such as Open MPI [5]. They usually just bind a single process per core, without
looking at its affinity for the underlying hardware.

NIC-Assisted Cache-Efficient Receive Stack 1075

6 Conclusion and Perspectives

The announced convergence between high-speed networks such as InfiniBand

and Ethernet raises the question of which specific hardware features will be-
come legacy. While HPC networking relies on complex hardware features such
as zero-copy, Ethernet remains simple. The Open-MX message passing stack
achieves interesting performance on top of it without requiring advanced features
in the networking hardware.

This paper presents a study of the cache-efficiency of the Open-MX receive
stack. We looked at the binding of interrupt processing in the driver and of the
library in user-space. We proposed the extension of the existing IP hardware mul-
tiqueue support which assigns a single core to each connection. It prevents shared
data structures from being concurrently accessed by multiple cores. Open-MX

specific packet hashing has been added into the official firmware of Myri-10G

boards so as to associate a single receive queue with each communication channel.
Secondly, we further extended the model by enabling the automatic binding of
the target end application to the same core. Therefore, there are fewer cache-line
bounces between cores from the interrupt handler up to the target application.

Performance evaluations first shows that the usual single-interrupt based
model may achieve very good performance when using a single task and bind-
ing it so that it shares a cache with the interrupt handler. However, as soon
as multiple processes and complex communication patterns are involved, the
performance of this model suffers, especially from load imbalance between the
cores. Using a single-interrupt scattered to all cores in a round-robin manner
distributes the load but it shows limited performance due to many cache misses.

Our proposed multiqueue implementation distributes the load as well. It also
offers satisfying performance for simple benchmarks. Moreover, binding the ap-
plication near its receive queue further improves the overall performance thanks
to fewer cache misses occurring on the receive path and thanks to the target core
being ready to process incoming packets. Communication intensive patterns re-
veal a large improvement since the impact of cache pollution is larger when
all cores and caches are busy. We observe more than 30 % of improvement for
Alltoall operations, while the execution time of the communication intensive
NAS parallel benchmark IS is reduced by a factor of up to 8.

These results prove that very simple hardware features enable significant per-
formance improvement. Indeed, multiqueue support is becoming a standard fea-
ture that many NIC now implement. Our implementation is Stateless and does
not require any intrusive modification of the NIC or host, contrary to usual HPC
innovations. We now plan to further study hardware assistance in the context
of message passing over Ethernet. We will first look at multiqueue support on
the send side. Then, designing an Open-MX-aware interrupt coalescing in the
NIC may lead to a better compromise between latency and host load. Finally,
the prefetching of incoming packets in processor caches with Intel DCA (Di-
rect Cache Access) [9] is another feature that may be combined with multiqueue

1076 B. Goglin

support for improving performance. Such features, as well as other stateless
features than can be easily implemented in legacy NICs, open a large room for
improvement of message passing over Ethernet networks.

Acknowlegments

We would like to thank Hyong-Youb Kim, Andrew J. Gallatin, and Loïc Prylli
from Myricom, Inc. for helping us when modifying the myri10ge firmware.

References

1. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, D.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K.: The NAS Parallel Benchmarks. The In-
ternational Journal of Supercomputer Applications 5(3), 63–73 (Fall 1991)

2. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A Portable Programming
Interface for Performance Evaluation on Modern Processors. The International
Journal of High Performance Computing Applications 14(3), 189–204 (2000)

3. Mellanox ConnectX - 4th Generation Server & Storage Adapter Architecture,
http://mellanox.com/products/connectx_architecture.php

4. FCoE (Fibre Channel over Ethernet), http://www.fcoe.com
5. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,

Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, September 2004, pp. 97–104 (2004)

6. Goglin, B.: Design and Implementation of Open-MX: High-Performance Message
Passing over generic Ethernet hardware. In: CAC 2008: Workshop on Communica-
tion Architecture for Clusters, held in conjunction with IPDPS 2008, Miami, FL,
April 2008. IEEE Computer Society Press, Los Alamitos (2008)

7. Goglin, B.: Improving Message Passing over Ethernet with I/OAT Copy Offload in
Open-MX. In: Proceedings of the IEEE International Conference on Cluster Com-
puting, Tsukuba, Japan, September 2008, pp. 223–231. IEEE Computer Society
Press, Los Alamitos (2008)

8. Grossman, L.: Large Receive Offload Implementation in Neterion 10GbE Ethernet
Driver. In: Proceedings of the Linux Symposium (OLS 2005), Ottawa, Canada,
July 2005, pp. 195–200 (2005)

9. Huggahalli, R., Iyer, R., Tetrick, S.: Direct Cache Access for High Bandwidth
Network I/O. SIGARCH Computer Architecture News 33(2), 50–59 (2005)

10. Intel MPI Benchmarks,
http://www.intel.com/cd/software/products/asmo-na/eng/cluster/
mpi/219847.htm

11. Myricom Myri-10G, http://myri.com/Myri-10G/
12. Myricom, Inc. Myrinet Express (MX): A High Performance, Low-Level, Message-

Passing Interface for Myrinet (2006), http://www.myri.com/scs/MX/doc/mx.pdf
13. The Parallel Virtual File System, version 2, http://www.pvfs.org

http://mellanox.com/products/connectx_architecture.php
http://www.fcoe.com
http://www.intel.com/cd/software/products/asmo-na/eng/cluster/
mpi/219847.htm
http://myri.com/Myri-10G/
http://www.myri.com/scs/MX/doc/mx.pdf
http://www.pvfs.org

NIC-Assisted Cache-Efficient Receive Stack 1077

14. Mohammad, J.R., Afsahi, A.: 10-Gigabit iWARP Ethernet: Comparative Perfor-
mance Analysis with Infiniband and Myrinet-10G. In: Proceedings of the Inter-
national Workshop on Communication Architecture for Clusters (CAC), held in
conjunction with IPDPS 2007, Long Beach, CA, March 2007, p. 234 (2007)

15. Santos, J.R., Turner, Y., Janakiraman, G(J.), Pratt, I.: Bridging the Gap be-
tween Software and Hardware Techniques for I/O Virtualization. In: Proceedings
of USENIX 2008 Annual Technical Conference, Boston, MA, June 2008, pp. 29–42
(2008)

16. Willmann, P., Rixner, S., Cox, A.L.: An Evaluation of Network Stack Paralleliza-
tion Strategies in Modern Operating Systems. In: Proceedings of the USENIX
Technical Conference, Boston, MA, pp. 91–96 (2006)

17. Yi, Z., Waskiewicz, P.P.: Enabling Linux Network Support of Hardware Multiqueue
Devices. In: Proceedings of the Linux Symposium (OLS 2007), Ottawa, Canada,
June 2007, pp. 305–310 (2007)

	NIC-Assisted Cache-Efficient Receive Stack for Message Passing over Ethernet
	Introduction
	Background and Motivations
	Design of the Open-MX Stack
	Cache Effects in the Open-MX Receive Stack
	Objectives and Motivations

	Design of a Cache-Friendly Open-MX Receive Stack
	Open-MX-Aware Multiqueue Ethernet Support
	Multiqueue-Aware Process Binding
	Implementation

	Performance Evaluation
	Experimentation Platform
	Impact of Binding on Micro-Benchmarks
	Idle Core Avoidance
	Cache Misses
	Collective Communication
	Application-Level Performance

	Related Works
	Conclusion and Perspectives

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

