Abstract
Searching for interesting patterns in binary matrices plays an important role in data mining and, in particular, in formal concept analysis and related disciplines. Several algorithms for computing particular patterns represented by maximal rectangles in binary matrices were proposed but their major drawback is their computational complexity limiting their application on relatively small datasets. In this paper we introduce a scalable distributed algorithm for computing maximal rectangles that uses the map-reduce approach to data processing.
Supported by institutional support, research plan MSM 6198959214.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. Journal of Computer and System Sciences (to appear)
Berry, A., Bordat, J.-P., Sigayret, A.: A local approach to concept generation. Annals of Mathematics and Artificial Intelligence 49, 117–136 (2007)
Carpineto, C., Romano, G.: Concept data analysis. Theory and applications. J. Wiley, Chichester (2004)
Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)
Fu, H., Nguifo, E.M.: A parallel algorithm to generate formal concepts for large data. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 394–401. Springer, Heidelberg (2004)
Ganter, B.: Two basic algorithms in concept analysis (Technical Report FB4-Preprint No. 831). TH Darmstadt (1984)
Ganter, B., Wille, R.: Formal concept analysis. Mathematical foundations. Springer, Berlin (1999)
Hadoop Core Framework, http://hadoop.apache.org/
Hettich, S., Bay, S.D.: The UCI KDD Archive University of California, Irvine, School of Information and Computer Sciences (1999)
Kengue, J.F.D., Valtchev, P., Djamegni, C.T.: A parallel algorithm for lattice construction. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 249–264. Springer, Heidelberg (2005)
Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis problem. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 335–346. Springer, Heidelberg (2006)
Krajca, P., Outrata, J., Vychodil, V.: Parallel Recursive Algorithm for FCA. In: Belohlavek, R., Kuznetsov, S.O. (eds.) Proc. CLA 2008, vol. 433, pp. 71–82. CEUR WS (2008) ISBN 978–80–244–2111–7
Krajca, P., Outrata, J., Vychodil, V.: Parallel Algorithm for Computing Fixpoints of Galois Connections. Annals of Mathematics and Artificial Intelligence (submitted)
Kuznetsov, S.: Interpretation on graphs and complexity characteristics of a search for specific patterns. Automatic Documentation and Mathematical Linguistics 24(1), 37–45 (1989)
Kuznetsov, S.: A fast algorithm for computing all intersections of objects in a finite semi-lattice Бьıстрый аЛгоритм построения всех пересечений оδЪектов изконечной полурешетки in Russian. Automatic Documentation and Mathematical Linguistics 27(5), 11–21 (1993)
Kuznetsov, S.O.: Learning of simple conceptual graphs from positive and negative examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 384–391. Springer, Heidelberg (1999)
Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Int. 14, 189–216 (2002)
Lindig, C.: Fast concept analysis. In: Working with Conceptual Structures -— Contributions to ICCS 2000, pp. 152–161. Shaker Verlag, Aachen (2000)
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Ordered Sets, Dordrecht, Boston, pp. 445–470 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Krajca, P., Vychodil, V. (2009). Distributed Algorithm for Computing Formal Concepts Using Map-Reduce Framework. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, JF. (eds) Advances in Intelligent Data Analysis VIII. IDA 2009. Lecture Notes in Computer Science, vol 5772. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03915-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-03915-7_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03914-0
Online ISBN: 978-3-642-03915-7
eBook Packages: Computer ScienceComputer Science (R0)