Abstract
Ensemble Clustering has been developed to provide an alternative way of obtaining more stable and accurate clustering results. It aims to avoid the biases of individual clustering algorithms. However, it is still a challenge to develop an efficient and robust method for Ensemble Clustering. Based on an existing ensemble clustering method, Consensus Clustering (CC), this paper introduces an advanced Consensus Clustering algorithm called Multi-Optimisation Consensus Clustering (MOCC), which utilises an optimised Agreement Separation criterion and a Multi-Optimisation framework to improve the performance of CC. Fifteen different data sets are used for evaluating the performance of MOCC. The results reveal that MOCC can generate more accurate clustering results than the original CC algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Swift, S., Tucker, A., Vincotti, V., Martin, N., Orengo, C., Liu, X., Kellam, P.: Consensus Clustering and Functional Interpretation of Gene-Expression Data. Genome Biology 5(11), R94.1–R94.16 (2004)
Hirsch, M., Swift, S., Liu, X.: Optimal Search Space for Clustering Gene Expression Data Via Consensus. Journal of Computational Biology 14(10), 1327–1341 (2007)
Hornik, K.: A Clue for Cluster Ensembles. Journal of Statistical Software 14(12) (2005), http://www.jstatsoft.org/v14/i12/
Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31(3), 264–323 (1999)
Lv, T., Huang, S., Zhang, X., Wang, Z.: Combining Multiple Clustering Methods Based on Core Group. In: Second International Conference on Semantics, Knowledge, and Grid (SKG 2006), p. 29 (2006)
Strehl, A., Ghosh, J.: Cluster Ensembles — a Knowledge Reuse Framework for Combining Multiple Partitions. J. Mach. Learn. Res. 3, 583–617 (2003)
Berkhin, P.: Survey of clustering data mining techniques. Technical Report, Accrue Software (2002)
Topchy, A., Jain, A.K., Punch, W.: Clustering Ensembles: Models of Consensus and Weak Partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(12), 1866–1881 (2005)
Bozdech, Z., Llinás, M., Pulliam, B.L., Wong, E.D., Zhu, J., DeRisi, J.L.: The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium Falciparum. PLoS Biology 1, 85–100 (2003)
Chen, G., Banerjee, N., Jaradat, S.A., Tanaka, T.S., Ko, M.S.H., Zhang, M.Q.: Evaluation and Comparison of Clustering Algorithms in Analyzing ES Cell Gene Expression Data. Statistica Sinica 12, 241–262 (2002)
Snedecor, G.W., Cochran, W.G.: Statistical Methods, 7th edn., pp. 175–178. Iowa State Press, Ames (1980)
Viera, A.J., Garrett, J.M.: Understanding Interobserver Agreement: the Kappa Statistic. Fam. Med. 37, 360–363 (2005)
Yeung, K.Y., Ruzzo, W.L.: Principal Component Analysis for Clustering Gene Expression Data. Bioinformatics 17(9), 763–774 (2001)
Lütkepohl, H.: New Introduction to Multiple Time Series Analysis, 1st edn., p. 49 (2007) ISBN:978-3-540-26239-8
Sims, C.A.: Macroeconomics and Reality. Econometrica, 1–48 (1980)
Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A Simulated Annealing based Multi-objective Optimization Algorithm: AMOSA. IEEE Transactions on Evolutionary Computation 12(3), 269–283 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, J., Swift, S., Liu, X. (2009). Multi-Optimisation Consensus Clustering. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, JF. (eds) Advances in Intelligent Data Analysis VIII. IDA 2009. Lecture Notes in Computer Science, vol 5772. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03915-7_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-03915-7_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03914-0
Online ISBN: 978-3-642-03915-7
eBook Packages: Computer ScienceComputer Science (R0)