Abstract
We present a 2D triangle mesh simplification model, which is able to produce high quality approximations of any original planar mesh, regardless of the shape of the original mesh. This model is applied to reduce the urban concentration of a real geographical area, with the property to maintain the original shape of the urban area. We consider the representation of an urbanized area as a 2D triangle mesh, where each node represents a house. In this context, the neural network model can be applied to simplify the network, what represents a reduction of the urban concentration. A real example is detailed with the purpose to demonstrate the ability of the model to perform the task to simplify an urban network.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alvarez, R., Noguera, J., Tortosa, L., Zamora, A.: A mesh optimization algorithm based on neural networks. Information Sciences 177, 5347–5364 (2007)
Barnett, J.: An introduction to urban design. Harper and Row, New York (1982)
Bereg, S.: Transforming pseudo-triangulations. Information Processing Letters 90(3), 141–145 (2004)
Bose, P., Hurtado, F.: Flips in planar graphs. Computational Geometry: Theory and Applications 42(1), 60–80 (2009)
Castelló, P., Sbert, M., Chover, M., Feixas, M.: Viewpoint-based simplification using f-divergences. Information Sciences 178(11), 2375–2388 (2008)
Cignoni, P., Montani, C., Scopigno, R.: A comparison of mesh simplification algorithms. Computer Graphics 22(1), 37–54 (1998)
Delaunay, B.: Sur la sphere vide. Bull. Acad. Sci. USSR VII:Class. Scil, Mat. Nat., 793–800 (1934)
Held, M., Mitchell, J.S.B.: Triangulating input-constrained planar point sets. Information Processing Letters 109, 54–56 (2008)
Kohonen, T.: Self-Organizing formation of topologically correct feature maps. Biological Cybernetics 43, 59–69 (1982)
Larice, M., MacDonald, E. (eds.): The Urban Design Reader, Routledge, New York (2007)
Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE Computer Graphics and Applications 21(3), 24–35 (2001)
Nguyen, H., Bunkardt, J., Gunzburger, M., Ju, L., Saka, Y.: Constrained CVT meshes and a comparison of triangular mesh generators. Comput. Geom. 42(1), 1–19 (2009)
Sharir, M., Welzl, E.: Random triangulations of planar point sets. In: Proceedings of the twenty-second annual symposium on Computational geometry, pp. 273–281 (2006)
Vivodtzev, F., Bonneau, G.P., Le Texier, P.: Topology Preserving Simplification of 2D Non-Manifold Meshes with Embedded Structures. Visual Comput. 21(8), 679–688 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tortosa, L., Vicent, J.F., Zamora, A., Oliver, J.L. (2009). Reducing Urban Concentration Using a Neural Network Model. In: Palmer-Brown, D., Draganova, C., Pimenidis, E., Mouratidis, H. (eds) Engineering Applications of Neural Networks. EANN 2009. Communications in Computer and Information Science, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03969-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-03969-0_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03968-3
Online ISBN: 978-3-642-03969-0
eBook Packages: Computer ScienceComputer Science (R0)