

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-829908

Matthias Boehm, Dirk Habich, Steffen Preissler, Wolfgang Lehner, Uwe Wloka

Cost-Based Vectorization of Instance-Based Integration Processes

Erstveröffentlichung in / First published in:

Advances in Databases and Information Systems: 13th East European Conference. Riga,
07.-10.09.2009. Springer, S. 253-269. ISBN 978-3-642-03973-7.

DOI: https://doi.org/10.1007/978-3-642-03973-7 19

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-829908
https://doi.org/10.1007/978-3-642-03973-7_19

Cost-Based Vectorization of Instance-Based
Integration Processes

Matthias Boehm1, Dirk Habich2, Steffen Preissler2, Wolfgang Lehner2,
and Uwe Wloka1

1 Dresden University of Applied Sciences, Database Group
{mboehm,wloka}@informatik.htw-dresden.de

2 Dresden University of Technology, Database Technology Group
{dirk.habich,steffen.preissler,wolfgang.lehner}@tu-dresden.de

Abstract. The inefficiency of integration processes—as an abstraction of
workflow-based integration tasks—is often reasoned by low resource uti-
lization and significant waiting times for external systems. With the aim to
overcome these problems, we proposed the concept of process vectorization.
There, instance-based integration processes are transparently executed with the
pipes-and-filters execution model. Here, the term vectorization is used in the
sense of processing a sequence (vector) of messages by one standing process.
Although it has been shown that process vectorization achieves a significant
throughput improvement, this concept has two major drawbacks. First, the
theoretical performance of a vectorized integration process mainly depends
on the performance of the most cost-intensive operator. Second, the practical
performance strongly depends on the number of available threads. In this paper,
we present an advanced optimization approach that addresses the mentioned
problems. Therefore, we generalize the vectorization problem and explain
how to vectorize process plans in a cost-based manner. Due to the exponential
complexity, we provide a heuristic computation approach and formally analyze
its optimality. In conclusion of our evaluation, the message throughput can be
significantly increased compared to both the instance-based execution as well as
the rule-based process vectorization.

Keywords: Cost-Based Vectorization, Integration Processes, Throughput Opti-
mization, Pipes and Filters, Instance-Based.

1 Introduction

Integration processes—as an abstraction of workflow-based integration tasks—are typ-
ically executed with the instance-based execution model [1]. Here, each incoming mes-
sage conceptually initiates a new instance of the related integration process. Therefore,
all messages are serialized according to their incoming order. This order is then used
to execute single-threaded process plans. Example system categories for that execution
model are EAI (enterprise application integration) servers, WfMS (workflow manage-
ment systems) and WSMS (Web service management systems). Workflow-based in-
tegration platforms usually do not reach high resource utilization because of (1) the
existence of single-threaded process instances in parallel processor architectures, (2)

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

significant waiting times for external systems, and (3) IO bottlenecks (message persis-
tence for recovery processing). Hence, the message throughput is not optimal and can
be significantly optimized using a higher degree of parallelism.

Other system types use the so-called pipes-and-filters execution model, where each
operator is conceptually executed as a single thread and each edge between two op-
erators contains a message queue. In order to overcome the problem of low resource
utilization, in [2], we introduced the vectorization of instance-based integration pro-
cesses. This approach describes the transparent rewriting of integration processes from
the instance-based execution model to the pipes-and-filters execution model. In that
context, different problems such as the assurance of serialized execution and different
data flow semantics were solved. We use the term vectorization in analogy to the area
of computational engineering because in the pipes-and-filters model, each operator ex-
ecutes a sequence (vector) of messages.

Although full vectorization can significantly increase the resource utilization and
hence improve the message throughput, the two following major shortcomings
exist:

Problem 1. Work-Cycle Domination: The work-cycle of a whole data-flow graph is
dominated by the work-cycle of the most cost-intensive operator because all queues
after this operator are empty while operators in front reach the maximum con-
straint of the queues. Hence, the theoretical performance mainly depends on that
operator.

Problem 2. Overload Resource Utilization: The practical performance strongly de-
pends on the number of available threads. For full vectorization, the number of re-
quired threads is determined by the number of operators. Hence, if the number of
required threads is higher than the number of available threads, performance will
degenerate.

In order to overcome those two drawbacks, in this paper, we propose the cost-based
vectorization of integration processes. The core idea is to group the m operators of a
process plan into k execution groups, then execute not each operator but each execution
group with a single thread and hence, reduce the number of required threads. This ap-
proach is a generalization of the specific cases of instance-based (k = 1) and vectorized
(k = m) integration processes. Therefore, here, we make the following contributions
that also reflect the structure of the paper:

– First, in Section 2, we revisit the vectorization of integration processes, explain re-
quirements and problems, and define the integration process vectorization problem.

– Subsequently, in Section 3, we introduce the sophisticated cost-based optimization
approach. This approach overcomes the problem of possible inefficiency by apply-
ing the simple rule-based rewriting techniques.

– Based on the details in Sections 2 and 3, we provide conceptual implementation
details and the results of our exhaustive experimental evaluation in Section 4.

Finally, we analyze the related work from different perspectives in Section 5 and con-
clude the paper in Section 6.

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

2 Process Plan Vectorization Revisited

In this section, we recall the core concepts from the process plan vectorization approach.
Therefore, we explain assumptions and requirements, define the vectorization problem
and give an overview of the rule-based vectorization approach.

2.1 Process Vectorization Overview

Figure 1 illustrates an inte-
External
System

Scheduler

Outbound
Adapter 1

...

Outbound
Adapter k

Process Engine

External
System

External
System

External
System

Operational Datastore (ODS)

Inbound
Adapter 1

...External
System

Inbound
Adapter n

External
System

... External
System

Fig. 1. Generalized Integration Platform Architecture

gration platform architecture
for instance-based integration
processes. Here, the key char-
acteristics are a set of inbound
adapters (passive listeners),
several message queues, a
central process engine, and
a set of outbound adapters
(active services). The message
queues are used as logical serialization elements within the asynchronous execution
model. However, the synchronous as well as the asynchronous execution of process
plans is supported. Further, the process engine is instance-based, which means that
for each message, a new instance (one thread) of the specified process plan is created
and executed. In contrast to traditional query optimization, in the area of integration
processes, the throughput maximization is much more important than the optimization
of the execution time of single process plan instances.

Due to the requirement of logical serialization of messages, those process plan in-
stances cannot be executed in a multi-threaded way. As presented in the SIR transaction
model [3], we must make sure that messages do not outrun other messages; for this pur-
pose, we use logical serialization concepts such as message queues. The requirement of
serialized execution of process plan instances is not always necessary. We can weaken
this requirement to serialized external behavior of process plan instances, which allows
us to apply a more fine-grained serialization concept. Finally, also the transactional be-
havior must be ensured using compensation- or recovery-based transaction models.

Based on the mentioned assumptions and requirements, we now formally define the
integration process vectorization problem. Figure 2(a) illustrates the temporal aspects
of a typical instance-based integration process. Semantically, in this example, a mes-
sage is received from the inbound message queue (Receive), then a schema mapping
(Translation) is processed and finally, the message is sent to an external system
(Invoke). In this case, different instances of this process plan are serialized in incom-
ing order. Such an instance-based process plan is the input of our vectorization problem.
In contrast to this, Figure 2(c) shows the temporal aspects of a vectorized integration
process. Here, only the external behavior (according to the start time T0 and the end
time T1 of instances) must be serialized. Such a vectorized process plan is the output of
the vectorization problem. This general problem is defined as follows.

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Receive Translation Invoke

Receive Trans ation Invoke

p

p2

P > p , p2, … pn

T0(p) T (p2) T0(p2)T (p)

time t

(a) Instance-Based Process Plan P

Process plan instance P1

Receive Translation Invoke Outbound
Adapter 1

Message
Queue

Process context
ctx P msg1 msg2

(b) Instance-Based Execution of P

Receive Trans ation Invoke

Receive Translat on Invoke

p

p2

T0(p)

P > p , p2, … pn

T (p)T0(p2) T (p2)

improvement due
to vectorization time t

(c) Fully Vectorized Process Plan P ′

Standing process plan P’

Receive Translation Invoke Outbound
Adapter 1

Message
Queue

 execution bucket bi (thread)
 inter-bucket message queue

(d) Fully Vectorized Execution of P ′

Fig. 2. Overview of Vectorization of Integration Processes

Definition 1. Integration Process Vectorization Problem (IPVP): Let P denote a pro-
cess plan and pi with pi = (p1, p2, . . . , pn) denotes the implied process plan in-
stances with P ⇒ pi. Further, let each process plan P comprise a graph of operators
oi = (o1, o2, . . . , om). For serialization purposes, the process plan instances are exe-
cuted in sequence with T1(pi) ≤ T0(pi+1). Then, the integration process vectorization
problem describes the search for the derived process plan P ′ that exhibits the highest
degree of parallelism for the process plan instances p′i such that the constraint condi-
tions (T1(p′i, oi) ≤ T0(p′i, oi+1)) ∧ (T1(p′i, oi) ≤ T0(p′i+1, oi)) hold and the semantic
correctness is ensured.

Based on the IPVP, we now recall the static cost analysis, where in general, cost denotes
the execution time. If we assume an operator sequence o with constant operator costs
C(oi) = 1, clearly, the following costs exist

C(P) = n · m // instance-based

C(P ′) = n + m − 1 // fully vectorized

Δ(C(P) − C(P ′)) = (n − 1) · (m − 1)

where n denotes the number of process plan instances and m denotes the number
of operators. Clearly, this is an idealized model only used for illustration purposes.
In practice, the improvement depends on the most time-consuming operator o′k with
C(o′k) = maxm

i=1 C(o′i) of a vectorized process plan P ′, where the costs can be speci-
fied as follows:

C(P) = n ·
m∑

i=1

C(oi)

C(P ′) = (n + m − 1) · C(o′k)

Δ(C(P) − C(P ′)) = n ·
m∑

i=1∧i�=k

C(oi) − (n + m − 1) · C(o′k) .

Obviously, the performance improvement can even be negative in case of a very small
number of process plan instances n. However, over time—and hence, with an increasing
n—the performance improvement grows linearly.

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

The general idea is to rewrite the instance-based process plan—where each instance
is executed as a thread—to a vectorized process plan, where each operator is executed as
a single execution bucket and hence, as a single thread. Thus, we model a standing pro-
cess plan. Due to different execution times of the single operators, inter-bucket queues
(with max constraints1) are required for each data flow edge. Figures 2(b) and 2(d)
illustrate those two different execution models. As already shown, this offers high op-
timization potential but this exclusively addresses the process engine, while all other
components can be reused without changes. However, at the same time, major chal-
lenges have to be solved when transforming P into P ′.

2.2 Message Model and Process Model

As a precondition for vectorization, our formal foundation—the Message Transforma-
tion Model (MTM) [4]—was extended in order to make it applicable also in the context
of vectorized integration processes (then we refer to it as VMTM). Basically, the MTM
consists of a message model and an instance-based process model.

We model a message m of a message type M as a quadruple with m = (M, S, A, D),
where M denotes the message type, S denotes the runtime state, and A denotes a map
of atomic name-value attribute pairs with ai = (n, v). Further, D denotes a map of
message parts, where a single message part is defined with di = (n, t). Here, n denotes
the part name and t denotes a tree of named data elements. In the VMTM, we extend it
to a quintuple with m = (M, C, S, A, D), where the context information C denotes an
additional map of atomic name-value attribute pairs with ci = (n, v). This extension is
necessary due to parallel message execution within one process plan.

A process plan P is defined with P = (o, c, s) as a 3-tuple representation of a
directed graph. Let o with o = (o1, . . . , om) denote a sequence of operators, let c de-
note the context of P as a set of message variables msgi, and let s denote a set of
services s = (s1, . . . , sl). Then, an instance pi of a process plan P , with P ⇒ pi,
executes the sequence of operators once. Each operator oi has a specific type as well
as an identifier NID (unique within the process plan) and is either of an atomic or
of a complex type. Complex operators recursively contain sequences of operators with
oi = (oi,1, . . . , oi,m). Further, an operator can have multiple input variables msgi ∈ c,
but only one output variable msgj ∈ c. Each service si contains a type, a configura-
tion and a set of operations. Further, we define a set of interaction-oriented operators
iop (Invoke, Receive and Reply), control-flow-oriented operators cop (Switch,
Fork, Iteration, Delay and Signal) and data-flow-oriented operators dop
(Assign, Translation, Selection, Projection, Join, Setoperation,
Split, Orderby, Groupby, Window, Validate, Savepoint and Action).
Furthermore, in the VMTM, the flow relations between operators oi do not specify the
control flow but the explicit data flow in the form of message streams. Additionally,
the Fork operator is removed because in the vectorized case, operators are model-
inherently executed in parallel. Finally, we introduce the additional operators AND and
XOR (for synchronization) as well as the COPY operator (for data flow splits).

1 Due to different execution times of single operators, queues in front of cost-intensive opera-
tors include larger numbers of messages. In order to overcome the problem of high memory
requirements, we constrained the maximal number of messages per queue.

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

2.3 Rewriting Algorithm

Basically, we distinguish between unary (one input) and binary (multiple input) opera-
tors. Both unary and binary operators of an instance-based process plan can be rewritten
with the same core concept (see [2] for the Algorithm) that contains the following four
steps. First, we create a queue instance for each data dependency between two operators
(the output message of operator oi is the input message of operator oi+1). Second, we
create an execution bucket for each operator. Third, we connect each operator with the
referenced input queue. Clearly, each queue is referenced by exactly one operator, but
each operator can reference multiple queues. Fourth, we connect each operator with the
referenced output queues. If one operator must be connected to n output queues with
n ≥ 2 (its results are used by multiple following operators), we insert a Copy operator
after this operator. This Copy operator simply gets a message from one input queue,
then copies it n − 1 times and puts those messages into the n output queues. Although
this rewriting algorithm is only executed once for all process instances, it is important
to notice the cubic complexity with O(m3) = O(m3 +m2), according to the number of
operators m. This complexity is dominated by dependency checking when connecting
operators and queues. Based on the standard rewriting concept, specific rewriting rules
for context-specific operators (e.g., Switch) and for serialization and recoverability
are required. Those rules and the related cost analysis are given in [2].

3 Cost-Based Vectorization

During rule-based process plan vectorization, an instance-based process plan (one exe-
cution bucket for all operators) is completely vectorized (one execution bucket for each
operator). This solves the integration process vectorization problem. However, the two
major weaknesses of this approach are (1) that the theoretical performance of a vector-
ized integration process mainly depends on the performance of the most cost-intensive
operator and (2) that the practical performance also strongly depends on the number
of available threads (and hence, on the number of operators). Thus, the optimality of
process plan vectorization strongly depends on dynamic workload characteristics. For
instance, the full process plan vectorization can also hurt performance due to additional
thread management if the instance-based process plan has already caused a 100-percent
resource consumption. In conclusion, we extend our approach and introduce a more
generalized problem description and an approach for the cost-based vectorization of
process plans. Obviously, the instance-based process plan and the fully vectorized pro-
cess plan are specific cases of this more general solution.

3.1 Problem Generalization

The input (instance-based process plan) and the output (vectorized process plan) of
the IPVP are extreme cases. In order to introduce awareness of dynamically changing
workload characteristics, we generalize the IPVP to the Cost-Based IPVP as follows:

Definition 2. Cost-Based Integration Process Vectorization Problem (CBIPVP): Let
P denote a process plan and pi with pi = (p1, p2, . . . , pn) denotes the implied pro-
cess plan instances with P ⇒ pi. Further, let each process plan P comprise a graph

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Table 1. Example Operator Distribution

b1 b2 b3 b4

1 k = 1 o1, o2, o3, o4 - - -
2 k = 2 o1 o2, o3, o4 - -
3 o1, o2 o3, o4 - -
4 o1, o2, o3 o4 - -
5 k = 3 o1 o2 o3, o4 -
6 o1 o2, o3 o4 -
7 o1, o2 o3 o4 -
8 k = 4 o1 o2 o3 o4

of operators oi = (o1, o2, . . . , om). For serialization purposes, the process plan in-
stances are executed in sequence with T1(pi) ≤ T0(pi+1). The CBIPVP describes
the search for the derived cost-optimal (minimal execution time of a message se-
quence) process plan P ′′ with k ∈ N execution buckets bi = (b1, b2, . . . , bk), where
each bucket contains l operators oi = (o1, o2, . . . , ol). Here, the constraint condi-
tions (T1(p′′i , bi) ≤ T0(p′′i , bi+1)) ∧ (T1(p′′i , bi) ≤ T0(p′′i+1, bi)) and (T1(bi, oi) ≤
T0(bi, oi+1))∧ (T1(bi, oi) ≤ T0(p′′i+1, bi)) must hold. We define that (lbi ≥ 1)∧ (lbi ≤
m) and

∑|bi|
i=1 lbi = m and that each operator oi is assigned to exactly one bucket bi.

If we reconsider the IPVP, on the one hand, an instance-based process plan P is a
specific case of the cost-based vectorized process plan P ′′, with k = 1 execution bucket.
On the other hand, also the fully vectorized process plan P ′ is a specific case of the cost-
based vectorized process plan P ′′, with k = m execution buckets, where m denotes the
number of operators oi. The following example illustrates that problem.

Example 1. Operator distribution across buckets: Assume a simple process plan P with
a sequence of four operators (m = 4). Table 1 shows the possible process plans for the
different numbers of buckets k. We can distinguish eight different (24−1 = 8) process
plans. Here, plan 1 is the special case of an instance-based process plan and plan 8 is
the special case of a fully vectorized process plan.

Theorem 1. The cost-based integration process vectorization problem exhibits an ex-
ponential complexity of O(2m).

Proof. The distribution function D of the number of possible plans over k is a sym-
metric distribution function according to Pascal’s Triangle, where the condition lbi =
lbk−i+1 with i ≤ m

2 does hold. Based on Definition 1, a process plan contains m opera-
tors. Due to Definition 2, we search for k execution buckets bi with lbi ≥ 1 ∧ lbi ≤ m

and
∑|bi|

i=1 lbi = m. Hence, m (k = 1, ..., k = m) different numbers of buckets have to
be evaluated. From now on, we fix m′ as m′ = m − 1 and k′ as k′ = k − 1. In fact,
there is only one possible plan for k = 1 (all operators in one bucket) and k = m (each
operator in a different bucket), respectively.

|P |k′=0 =
(

m′

0

)
= 1 and |P |k′=m′ =

(
m′

m′

)
= 1 .

Now, fix a specific m and k. Then, the number of possible plans is computed with

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

|P |k =
(

m′

k′

)
=

(
m′ − 1
k′ − 1

)
+

(
m′ − 1

k′

)
=

k′∏

i=1

m′ + 1 − i

i
.

In order to compute the number of possible plans, we have to sum up the possible plans
for each k, with 1 ≤ k ≤ m:

|P | =
m′∑

k′=0

(
m′

k′

)
with k′ = k − 1 and m′ = m − 1 .

Finally,
∑n

k=0

(
n
k

)
is known to be equal to 2n. Hence, by changing the index k from

k′ = 0 to k = 1 we can write:

|P | =
m′∑

k′=0

(
m′

k′

)
=

m∑

k=1

(
m − 1
k − 1

)
= 2(m−1) .

In conclusion, there are 2(m−1) possible process plans that must be evaluated. Due
to the linear complexity of O(m) for determining the costs of a plan, the cost-based
integration process vectorization problem exhibits an exponential overall complexity
with O(2m) = O(m · 2(m−1)).

Note that we have a recursive algorithm because we need to include complex operators
as well. For understandability, we simplified this to a sequence of atomic operators.

3.2 Heuristic Approach

Due to the exponential complexity of the CBIPVP, a search space reduction approach
for determining the cost-optimal solution for the CBIPVP is strongly needed. Here,
we present a heuristic-based algorithm that solves the CBIPVP with linear complexity
of O(m). The core heuristic of our approach is illustrated in Figure 3. Basically, we
set k = m, where each operator is executed in a single execution bucket. Then, we
merge those execution buckets in a cost-based fashion. Typically, the improvements
achieved by vectorization mainly depend on the most time-consuming operator ok with
C(P, ok) = maxm

i=1 C(P, oi) of a process plan P . The reason is that the costs of a
vectorized process plan are computed with C(P ′) = (n+m−1)·C(o′k), and hence, the
work cycle of the vectorized process plan is given by C(o′k). Thus, the time period of the
start of two subsequent process plan instances is given by T0(pi+1)− T0(pi) = C(o′k).
It would be more efficient to leverage the queue waiting times and merge execution
buckets. Hence, we use this heuristic to solve the constrained problem.

Definition 3. Constrained CBIPVP: According to the CBIPVP, find the minimal num-
ber of buckets k and an assignment of operators oi with i = 1, .., m to those execution
buckets bi with i = 1, ..k such that ∀bi : C(b′′i) ≤ maxm

i=1 C(o′i) + λ, and make sure
that the assignment preserves the order with respect to the operator sequence o. Here,
λ is a user-defined parameter (in terms of execution time) to control the cost constraint.

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

time t

p1

p2

o2 o3 oo1

o2 o3 oo1

o2 o3 oo1p3

T0(p1) T0(p2)T1(p1) T1(p3) T0(p3)T1(p2)

(a) Instance-Based Process Plan P

time t

p1

p2

o2 o3 oo1

o2 o3 oo1

o2 o3 oo1p3

T0(p1) T1(p1)T0(p2) T1(p3)T1(p2)T0(p3)

(b) Fully Vectorized Process Plan P ′

time t

p1

p2

o2 o3 oo1

p3

o2 o3 oo1

o2 o3 oo1

T0(p1) T1(p1)T0(p2) T1(p3)T1(p2)T0(p3)

(c) Cost-Based Vectorized Process Plan P ′′

Fig. 3. Work Cycle Domination by Operator o3

Figure 4 illustrates the influence of λ and the core idea of solving the con-
strained problem. Each operator oi has assigned costs C(o′i). In our example, it is
maxm

i=1 C(o′i) = C(o′3) = 5. The Constrained CBIPVP describes the search for the
minimal number of execution buckets, where the cumulative costs of each bucket must
not be larger than the determined maximum plus a user-defined λ. Hence, in our exam-
ple, we search for the k buckets, where the cumulative costs of each bucket are, at most,

Algorithm 1. Cost-Based Bucket Determination
Require: operator sequence o
1: A← �, B ← �, k ← 0
2: max← maxm

i=1 C(P ′, oi) + λ
3: for i = 1 to |o| do // foreach operator
4: if oi ∈ A then
5: continue 3
6: end if
7: k← k + 1
8: bk(oi)← create bucket over oi

9: for j = i + 1 to |o| do // foreach following operator
10: if

∑|bk|
c=1 C(oc) + C(oj) ≤ max then

11: bk ← add oj to bk

12: A← A ∪ oj

13: else
14: break 9
15: end if
16: end for
17: B ← B ∪ bk

18: end for
19: return B

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

equal to five. If we increase λ, we can reduce the number of buckets by increasing the
allowed maximum and hence, the work cycle of the vectorized process plan.

Algorithm 2 illustrates the given operator
sequence o

C(o1)=1
o1 o2 o o5 o6

C(o2)=4 C(o3)=5 C(o)=2 C(o5)=3 C(o6)=1

=0 (max C(bi)=5) o1 o2 o o5 o6

o1 o2 o o5 o6

o1 o2 o o5 o6

=1 (max C(bi)=6)

=2 (max C(bi)=7)

k=4

k=3

k=3

o3

o3

o3

o3

Fig. 4. Bucket Merging with Different λ

concept of the cost-based
bucket determination algo-
rithm. Here, the operator
sequence2 o is required. First,
we initialize two sets A and
B as empty sets. After that,
we compute the maximal
costs of a bucket max with
max = maxm

i=1 C(o′i) + λ. Then, there is the main loop over all operators. If the
operator oi belongs to A (operators already assigned to buckets), we can proceed with
the next operator. Otherwise, we create a new bucket bk and increment k (number of
buckets) accordingly. After that, we execute the inner loop in order to assign operators
to this bucket such that the constraint

∑|bk|
c=1 C(oc) ≤ max holds. This is done by

adding oj to bk and to A. Here, we can ensure that each created bucket has at least one
operator assigned. Finally, each new bucket bk is added to the set of buckets B.

Theorem 2. The cost-based bucket determination algorithm solves the constrained
cost-based integration process vectorization problem with linear complexity of O(m).

Proof. Assume a process plan that comprises a sequence of m operators. First, the
maximum of a value list (line 2) is known to be of complexity O(m) (m operator evalu-
ations). Second, we can see that the bucket number is at least 1 (all operators assigned to
one bucket) and at most m (each operator assigned to exactly one bucket). Third, in the
case of k = 1 there are at most 2m − 1 possible operator evaluations. Also, in the case
of k = m there are at most 2m − 1 possible operator evaluations. If we assume that
the operations ∈ and ∪—in our case—exhibit constant time complexity of O(1), we
now can conclude that the cost-based bucket determination algorithm exhibits a linear
complexity with O(m) = O(3m − 1) = O(m) + O(2m − 1).

3.3 Optimality Analysis

As already mentioned, the optimality of the vectorized process plan depends on (1)
the costs of the single operators, (2) the resource consumption of each operator and (3)
the available hardware resources (possible parallelism). However, the cost-based bucket
determination algorithm only takes the costs from (1) into consideration. Nevertheless,
we show that optimality guarantees can be given using this heuristic approach.

The algorithm can be parameterized with respect to the hardware resources (3). If
we want to force a single-threaded execution, we simply set λ to λ ≥ ∑m

i=1 C(oi) −
maxm

i=1 C(oi). If we want to force the highest meaningful degree of parallelism (this is
not necessarily a full vectorization), we simply set λ = 0.

2 Note that each process plan is a sequence of atomic and complex operators. Due to those
complex operators, the cost-based bucket determination algorithm is a recursive algorithm.
However, we transformed it to a linear one in order to show the core concept.

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Now, assuming the given λ configuration, the question is, which optimality guarantee
can we give for the solution of the cost-based bucket determination algorithm. For this
purpose, Re(oi) denotes the empirical resource consumption (measured with a specific
configuration) of an operator oi with 0 ≤ Re(oi) ≤ 1, and Ro(oi) denotes the maximal
resource consumption of an operator oi with 0 ≤ Ro(oi) ≤ 1. Here, Ro(oi) = 1 means
that the operator oi exhibits an average resource consumption of 100 percent. In fact,
the condition

∑m
i=1 Re(oi) ≤ 1 must hold.

Obviously, for an instance-based plan P , we can write Re(oi) = Ro(oi) because
all operators are executed in sequence. When we vectorize P to a fully vectorized plan
P ′, with a maximum of Re(o′i) = 1

m , we have to compute the costs with C(o′i) =
Ro(oi)
Re(o′

i)
· C(oi). When we merge two execution buckets b′i and b′i+1 during cost-based

bucket determination, we compute the effective resource consumption Re(b′′i) = 1
|b|−1 ,

the maximal resource consumption Ro(b′′i) = C(b′i)·Ro(b′i)+C(b′i+1)·Ro(b′i+1)

C(b′i)+C(b′i+1)
, and the

cost

C(b′′i) =

⎧
⎨

⎩

Re(b′i)
Re(b′′i) · C(b′i) + Re(b′i+1)

Re(b′′i+1)
· C(b′i+1) Re(b′′i) ≤ Ro(b′′i)

Ro(b′i)
Ro(b′′i) · C(b′i) + Ro(b′i+1)

Ro(b′′i+1)
· C(b′i+1) otherwise

.

Obviously, we made the assumption that each execution bucket gets the same maxi-
mal resource consumption Re(b′′i) and that resources are not exchanged between those
buckets. We do not take the temporal overlap into consideration. However, we can give
the following optimality guarantee.

Theorem 3. The cost-based bucket determination algorithm solves the cost-based in-
tegration process vectorization problem with an optimality guarantee of (C(P ′′) ≤
C(P)) ∧ (C(P ′′) ≤ C(P ′)) under the restriction of λ = 0.

Proof. As a precondition it is important to notice that the cost-based bucket determina-
tion algorithm cannot result in a plan with k = 1 (although this is a special case of the
CBIPVP) due to the maximum rule of

∑|bk|
c=1 C(oc)+C(oj) ≤ max (Algorithm 2, line

10). Hence, in order to prove the theorem, we only need to prove the two single claims
of C(P ′′) ≤ C(P) and C(P ′′) ≤ C(P ′).

For the proof of C(P ′′) ≤ C(P), assume the worst case where ∀oi ∈ Ro(oi) = 1.

If we vectorize this to P ′′, we need to compute the costs by C(b′′i) = Ro(b′′i)
Re(b′′i) · C(oi)

with Re(b′′i) = 1
m . Due to the vectorized execution, C(P ′′) = maxm

i=1 C(b′′i), while
C(P) =

∑m
i=1 C(oi). Hence, we can write C(P ′′) = C(P) if the condition ∀oi ∈

Ro(oi) = 1 holds. This is the worst case. For each Ro(oi) < 1, we get C(P ′′) < C(P).
In order to prove C(P ′′) ≤ C(P ′), we set λ = 0. If we merge two buckets bi

and bi+1, we see that Re(b′′i) is increased from 1
|b| to 1

|b|−1 . Thus, we re-compute the
costs C(b′′i) as mentioned before. In the worst case, C(b′′i) = C(b′i), which is true
iff Re(b′i) = Ro(b′i) because then we also have Re(b′′i) = Re(b′i). Due to C(P ′′) =
maxm

i=1 C(b′′i), we can state C(P ′′) ≤ C(P). Hence, the theorem holds.

In conclusion, we cannot guarantee that the result of the cost-based bucket determina-
tion algorithm is the global optimum because we cannot evaluate the effective resource

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

11

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

consumption in an efficient way. However, we can guarantee that each merging of exe-
cution buckets when solving the CBIPVP improves the performance of the process plan
P . Hence, we follow a best-effort optimization approach.

3.4 Dynamic Process Plan Rewriting

Due to the cost-based bucket determination approach, the dynamic process plan rewrit-
ing is required. The major problem when rewriting a vectorized process plan during run-
time is posed by loaded queues. The used queues can be stopped using the stopped
flag. If we—for example—want to merge two execution buckets bi and bi+1, we need
to stop the queue qi that is represented by the edge between bi−1 and bi. Then, we wait
until the queue qi+1 (the queue just between bi and bi+1) contains 0 messages. Now,
we can merge the execution buckets to bi and simply remove qi+1. This concept can be
used for bucket merging and splitting, respectively. Finally, the rewriting algorithm is
triggered only if a different plan than the current one has been determined by the cost-
based bucket determination algorithm. In fact, we need to compare two plans P ′′

1 and
P ′′

2 by graph matching. However, this is known to be of linear complexity with O(m).

4 Experimental Evaluation

In this section, we provide selected experimental results. In general, we can state that the
vectorization of integration processes leads to a significant performance improvement.
In fact, we can show that Theorem 4 (C(P ′′) ≤ C(P) ∧ C(P ′′) ≤ C(P ′) under the
restriction of λ = 0) does also hold during experimental performance evaluation.

4.1 Experimental Setup

We implemented the presented approach within our so-called WFPE (workflow process
engine) using Java 1.6 as the programming language. Here, we give a brief overview
of the WFPE and discuss some implementation details. In general, the WFPE uses com-
piled process plans (a java class is generated for each integration process type). Further-
more, it follows an instance-based execution model. Now, we integrated components for
the static vectorization of integration processes (we call this VWFPE) and for the cost-
based vectorization (we call this CBVWFPE). For that, new deployment functionalities
were introduced (those processes are executed in an interpreted fashion) and several
changes in the runtime environment were required. Finally, all three different runtime
approaches can be used alternatively.

We ran our experiments on a standard blade (OS Suse Linux) with two processors
(each of them a Dual Core AMD Opteron Processor 270 at 1,994 MHz) and 8.9 GB
RAM. Further, we executed all experiments on synthetically generated XML data (us-
ing our DIPBench toolsuite [5]) because the data distribution of real data sets has only
minor influence on the performance of the integration processes used here. However,
there are several aspects that influence the performance improvement of the vectoriza-
tion and hence, these should be analyzed. In general, we used the following five aspects
as scale factors for all three execution approaches: data size d of a message, the number

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

12

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

of nodes m of a process plan, the time interval t between two messages, the number of
process instances n and the maximal number of messages q in a queue. Here, we mea-
sured the performance of different combinations of those. For statistical correctness, we
repeated all experiments 20 times and computed the arithmetic mean.

As base integration process for our experiments, we modeled a simple sequence of
six operators. Here, a message is received (Receive) and then an archive writing is
prepared (Assign) and executed with the file adapter (Invoke). After that, the result-
ing message (contains Orders and Orderlines) is translated using an XML transforma-
tion (Translation) and finally sent to a specific directory (Assign, Invoke). We
refer to this as m = 5 because the Receive is removed during vectorization. When
scaling m up to m = 35, we simply copy the last five operators and reconfigure them.

4.2 Performance and Throughput

Here, we ran a series of five experiments according to the already introduced influencing
aspects. The results of these experiments are shown in Figure 5. Basically, the five
experiments correlate to the mentioned scale factors.

In Figure 5(a), we scaled the data size d of the XML input messages from 100 kb to
700 kb and measured the processing time for 250 process instances (n = 250) needed
by the three different runtimes. There, we fix m = 5, t = 0, n = 250 and q =
50. We can observe that all three runtimes exhibit a linear scaling according to the
data size and that significant improvements can be reached using vectorization. There,
the absolute improvement increases with increasing data size. Further, in Figure 5(d),
we illustrated the variance of this sub-experiment. The variance of the instance-based
execution is minimal, while the variances of both vectorized runtimes are worse because
of the operator scheduling. Note that the cost-based vectorization exhibits a significantly
lower variance than in the fully vectorized case because of a lower number of threads.

Now, we fix d = 100 (lowest improvement in 5(a)), t = 0, n = 250 and q = 50
in order to investigate the influence of m. We vary m from 5 to 35 nodes as already
mentioned for the experimental setup. Interestingly, not only the absolute but also the
relative improvement of vectorization increases with increasing number of operators.
In comparison to full vectorization, for cost-based vectorization, a constant relative im-
provement is observable.

Figure 5(c) shows the impact of the time interval t between the initiation of two
process instances. For that, we fix d = 100, m = 5, n = 250, q = 50 and vary t from
10 ms to 70 ms. There is almost no difference between the full vectorization and the
cost-based vectorization. However, the absolute improvement between instance-based
and vectorized approaches decreases slightly with increasing t. An explanation is that
the time interval has no impact on the instance-based execution. In contrast to that, the
vectorized approach depends on t because of resource scheduling.

Further, we analyze the influence of the number of instances n as illustrated in
Figure 5(e). Here, we fix d = 100, m = 5, t = 0, q = 50 and vary n from 100 to
700. Basically, we can observe that the relative improvement between instance-based
and vectorized execution increases when increasing n, due to parallelism of process
instances. However, it is interesting to note that the fully vectorized solution performs

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

13

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

(a) Scalability over d (b) Scalability over m (c) Scalability over t

(d) Variance over d (e) Scalability over n (f) Scalability over q

Fig. 5. Experimental Performance Evaluation Results

slightly better for small n. However, when increasing n, the cost-based vectorized ap-
proach performs optimal.

Figure 5(f) illustrates the influence of the maximal queue size q, which we varied
from 10 to 70. Here, we fix d = 100, m = 5, t = 0 and n = 250. In fact, q slightly
affects the overall performance for a small number of concurrent instances n. However,
at n = 250, we cannot observe any significant influence with regard to the performance.

4.3 Deployment and Maintenance

The purpose of this experiment was to an-

Fig. 6. Vectorization Overhead Analysis

alyze the deployment overhead of three
different runtimes. We measured the costs
for the process plan vectorization (PPV)
algorithm and the periodically invoked
cost-based bucket determination (CBBD)
algorithm.

Figure 6 shows those results. Here, we
varied the number of nodes m because
all other scale factors do not influence
the deployment and maintenance costs.
In general, there is a huge performance
improvement using vectorization with a
factor of up to seven. It is caused by the
different deployment approaches. The WFPE uses a compilation approach, where java
classes are generated from the integration process specification. In contrast to this, the

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

14

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

VWFPE as well as the CBVWFPE use interpretation approaches, where process plans
are built dynamically with the PPV algorithm. In fact, VWFPE always outperforms
CBVWFPE because both use the PPV algorithm but CBVWFPE additionally uses the
CBBD algorithm in order to find the optimal k. Note that the additional costs for
the CBBD algorithm (that cause a break-even point with the standard WFPE) occur
periodically during runtime (period is a parameter). In conclusion, the vectorization
of integration processes allows for better runtime as well as better deployment time
performance. Hence, this approach can be used under all circumstances.

5 Related Work

We review related work from the perspectives of computational engineering, database
management systems, data stream management systems, streaming service and process
execution, and integration process optimization.

Computational Engineering. Based on Flynn’s classification, vectorization can be
classified as SIMD (single instruction, multiple data) and in special cases as MIMD
(multiple instruction, single data). Here, we use the term vectorization only as analogy.

Database Management Systems. In the context of DBMS, throughput optimization
has been addressed with different techniques. One significant approach is data sharing
across common subexpressions of different queries or query instances [6,7,8,9]. How-
ever, in [10] it was shown that sharing can also hurt performance. Another inspiring
approach is given by staged DBMS [11]. Here, in the QPipe Project [12,13], each rela-
tional operator was executed as a so-called micro-engine (one operator, many queries).
Further, throughput optimization approaches were introduced also in the context of dis-
tributed query processing [14,15].

Data Stream Management Systems. Further, in the context of data stream manage-
ment systems (DSMS) and ETL tools, the pipes-and-filters execution model is widely
used. Examples for those systems are QStream [16], Demaq [17] and Borealis [18].
Surprisingly, the cost-based vectorization has not been used so far because the operator
scheduling [19,20,21,22] in DSMS is not realized with multiple processes or threads but
with central control strategies (assuming high costs for switching the process context).
Furthermore, there is one interesting approach [23], where operators are distributed
across a number of threads in a query-aware manner. However, this approach does not
compute the cost-optimal distribution.

Streaming Service and Process Execution. In service-oriented environments,
throughput optimization has been addressed on different levels. Performance and re-
source issues, when processing large volumes of XML documents, lead to message
chunking on service-invocation level. There, request documents are divided into chunks
and services are called for every single chunk [24]. An automatic chunk-size compu-
tation using the extremum-control approach was addressed in [25]. On process level,
pipeline scheduling was incorporated in [26] into a general workflow model to show the
valuable benefit of pipelining in business processes. Further, [1] adds pipeline seman-
tics to classic step-by-step workflows by extending available task states and utilizing a
one-item queue between two consecutive tasks. None of those approaches deals with
cost-based rewriting of instance-based processes to pipeline semantics.

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

15

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Integration Process Optimization. Optimization of integration processes has not yet
been explored sufficiently. There are platform-specific optimization approaches for the
pipes-and-filters execution model, like the optimization of ETL processes [27], as well
as numerous optimization approaches for instance-based processes like the optimiza-
tion of data-intensive decision flows [28], the static optimization of the control flow,
the use of critical path approaches [29] and SQL-supporting BPEL activities and their
optimization [30]. Further, we investigated the optimization of message transformation
processes [4] and the cost-based optimization of instance-based integration processes
[31]. Finally, the rule-based vectorization approach—presented in [2]—was the foun-
dation of our cost-optimal solution to the vectorization problem.

6 Conclusions

In order to optimize the throughput of integration platforms, in this paper, we revisited
the concept of automatic vectorization of integration processes. Due to the dependence
on the dynamic workload characteristics, we introduced the cost-based process plan
vectorization, where the costs of single operators are taken into account and operators
are merged to execution buckets. Based on our experimental evaluation, we can state
that significant throughput improvements are possible. In conclusion, the concept of
process vectorization is applicable in many different application areas. Future work can
address specific optimization techniques for the cost-based vectorization.

References

1. Biornstad, B., Pautasso, C., Alonso, G.: Control the flow: How to safely compose streaming
services into business processes. In: IEEE SCC (2006)

2. Boehm, M., Habich, D., Lehner, W., Wloka, U.: Vectorizing instance-based integration
processes. In: ICEIS (2009),
http://wwwdb.inf.tu-dresden.de/team/archives/2007/04/
dipl wirtinf ma.php

3. Boehm, M., Habich, D., Lehner, W., Wloka, U.: An advanced transaction model for recovery
processing of integration processes. In: ADBIS (2008)

4. Boehm, M., Habich, D., Wloka, U., Bittner, J., Lehner, W.: Towards self-optimization of
message transformation processes. In: ADBIS (2007)

5. Boehm, M., Habich, D., Lehner, W., Wloka, U.: Dipbench toolsuite: A framework for bench-
marking integration systems. In: ICDE (2008)

6. Dalvi, N.N., Sanghai, S.K., Roy, P., Sudarshan, S.: Pipelining in multi-query optimization.
In: PODS (2001)

7. Hasan, W., Motwani, R.: Optimization algorithms for exploiting the parallelism-
communication tradeoff in pipelined parallelism. In: VLDB (1994)

8. Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and extensible algorithms for multi
query optimization. In: SIGMOD (2000)

9. Wilschut, A.N., van Gils, S.A.: A model for pipelined query execution. In: MASCOTS
(1993)

10. Johnson, R., Hardavellas, N., Pandis, I., Mancheril, N., Harizopoulos, S., Sabirli, K., Aila-
maki, A., Falsafi, B.: To share or not to share? In: VLDB (2007)

11. Harizopoulos, S., Ailamaki, A.: A case for staged database systems. In: CIDR (2003)

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

16

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://wwwdb.inf.tu-dresden.de/team/archives/2007/04/dipl_wirtinf_ma.php
http://wwwdb.inf.tu-dresden.de/team/archives/2007/04/dipl_wirtinf_ma.php

12. Gao, K., Harizopoulos, S., Pandis, I., Shkapenyuk, V., Ailamaki, A.: Simultaneous pipelining
in qpipe: Exploiting work sharing opportunities across queries. In: ICDE (2006)

13. Harizopoulos, S., Shkapenyuk, V., Ailamaki, A.: Qpipe: A simultaneously pipelined rela-
tional query engine. In: SIGMOD (2005)

14. Ives, Z.G., Florescu, D., Friedman, M., Levy, A.Y., Weld, D.S.: An adaptive query execution
system for data integration. In: SIGMOD (1999)

15. Lee, R., Zhou, M., Liao, H.: Request window: an approach to improve throughput of rdbms-
based data integration system. In: VLDB (2007)

16. Schmidt, S., Berthold, H., Lehner, W.: Qstream: Deterministic querying of data streams. In:
VLDB (2004)

17. Boehm, A., Marth, E., Kanne, C.C.: The demaq system: declarative development of dis-
tributed applications. In: SIGMOD (2008)

18. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.H., Lind-
ner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.: The design
of the borealis stream processing engine. In: CIDR (2005)

19. Babcock, B., Babu, S., Datar, M., Motwani, R., Thomas, D.: Operator scheduling in data
stream systems. VLDB J. 13(4) (2004)

20. Carney, D., Çetintemel, U., Rasin, A., Zdonik, S.B., Cherniack, M., Stonebraker, M.: Oper-
ator scheduling in a data stream manager. In: VLDB (2003)

21. Koch, C., Scherzinger, S., Schweikardt, N., Stegmaier, B.: Schema-based scheduling of event
processors and buffer minimization for queries on structured data streams. In: VLDB (2004)

22. Schmidt, S., Legler, T., Schaller, D., Lehner, W.: Real-time scheduling for data stream man-
agement systems. In: ECRTS (2005)

23. Cammert, M., Heinz, C., Krämer, J., Seeger, B., Vaupel, S., Wolske, U.: Flexible multi-
threaded scheduling for continuous queries over data streams. In: ICDE Workshops (2007)

24. Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query optimization over web ser-
vices. In: VLDB (2006)

25. Gounaris, A., Yfoulis, C., Sakellariou, R., Dikaiakos, M.D.: Robust runtime optimization of
data transfer in queries over web services. In: ICDE (2008)

26. Lemos, M., Casanova, M.A., Furtado, A.L.: Process pipeline scheduling. J. Syst. Softw. 81(3)
(2008)

27. Simitsis, A., Vassiliadis, P., Sellis, T.: Optimizing etl processes in data warehouses. In: ICDE
(2005)

28. Hull, R., Llirbat, F., Kumar, B., Zhou, G., Dong, G., Su, J.: Optimization techniques for
data-intensive decision flows. In: ICDE (2000)

29. Li, H., Zhan, D.: Workflow timed critical path optimization. Nature and Science 3(2) (2005)
30. Vrhovnik, M., Schwarz, H., Suhre, O., Mitschang, B., Markl, V., Maier, A., Kraft, T.: An

approach to optimize data processing in business processes. In: VLDB (2007)
31. Boehm, M., Habich, D., Lehner, W., Wloka, U.: Workload-based optimization of integration

processes. In: CIKM (2008)

Final edited form was published in "Advances in Databases and Information Systems: 13th East European Conference.
Riga 2009", S. 253-269, ISBN 978-3-642-03973-7

https://doi.org/10.1007/978-3-642-03973-7_19

17

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	Cost-Based Vectorization of Instance-Based Integration Processes
	Introduction
	Process Plan Vectorization Revisited
	Process Vectorization Overview
	Message Model and Process Model
	Rewriting Algorithm

	Cost-Based Vectorization
	Problem Generalization
	Heuristic Approach
	Optimality Analysis
	Dynamic Process Plan Rewriting

	Experimental Evaluation
	Experimental Setup
	Performance and Throughput
	Deployment and Maintenance

	Related Work
	Conclusions

	ADP9E25.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Matthias Boehm, Dirk Habich, Steffen Preissler, Wolfgang Lehner, Uwe Wloka

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

