
Caroline: An Autonomously Driving Vehicle for

Urban Environments

Fred W. Rauskolb1, Kai Berger2, Christian Lipski2, Marcus Magnor2,
Karsten Cornelsen3, Jan Effertz3, Thomas Form3, Fabian Graefe3,
Sebastian Ohl3, Walter Schumacher3, Jörn-Marten Wille3, Peter Hecker4,
Tobias Nothdurft4, Michael Doering5, Kai Homeier5,
Johannes Morgenroth5, Lars Wolf5, Christian Basarke6,
Christian Berger6, Tim Gülke6, Felix Klose6, and Bernhard Rumpe6

1 Herzfeld & Rubin, P.C.
40 Wall Street
New York, NY 10005

2 Institute of Computer Graphics
Mühlenpfordtstraße 23
38106 Braunschweig, Germany

3 Institute of Control Engineering
Hans-Sommer-Straße 66
38106 Braunschweig, Germany

4 Institute of Flight Guidance
Hermann-Blenk-Straße 27
38108 Braunschweig, Germany

5 Institute of Operating Systems and Computer Networks
Mühlenpfordtstraße 23
38106 Braunschweig, Germany

6 Institute of Software Systems Engineering
Mühlenpfordtstraße 23
38106 Braunschweig, Germany
carolo-uc@tu-bs.de

Abstract. The 2007 DARPA Urban Challenge afforded the golden opportunity for
the Technische Universität Braunschweig to demonstrate its abilities to develop an
autonomously driving vehicle to compete with the world’s best competitors. After
several stages of qualification, our team CarOLO qualified early for the DARPA
Urban Challenge Final Event and was among only eleven teams from initially 89
competitors to compete in the final. We had the ability to work together in a large
group of experts, each contributing his expertise in his discipline, and significant
organisational, financial and technical support by local sponsors who helped us to
become the best non-US team.

In this report, we describe the 2007 DARPA Urban Challenge, our contribu-
tion ”Caroline”, the technology and algorithms along with her performance in the
DARPA Urban Challenge Final Event on November 3, 2007.

www.se-rwth.de/publications

442 F.W. Rauskolb et al.

1 Motivation and Introduction

Focused research is often centered around interesting challenges and awards.
The airplane industry started off with awards for the first flight over the British
Channel as well as the Atlantic Ocean. The Human Genome Project, the
RoboCups and the series of DARPA Grand Challenges for autonomous vehi-
cles serve this very same purpose to foster research and development in a par-
ticular direction. The 2007 DARPA Urban Challenge is taking place to boost
development of unmanned vehicles for urban areas. Although there is an ob-
vious direct benefit for DARPA and the U.S. government, there will also be
a large number of spin-offs in technologies, tools and engineering techniques,
both for autonomous vehicles, but also for intelligent driver assistance. An in-
telligent driver assistance function needs to be able to understand the sur-
roundings of the car, evaluate potential risks and help the driver to behave
correctly, safely and, in case it is desired, also efficiently. These topics do not
only affect ordinary cars, but also buses, trucks, convoys, taxis, special-purpose
vehicles in factories, airports and more. It will take a number of years before we
will have a mass market for cars that actively and safely protect the passenger
and the surroundings, like pedestrians, from accidents in any situation.

Intelligent functions in vehicles are obviously complex systems. Large is-
sues in this project where primarily the methods, techniques and tools for the
development of such a highly critical, reliable and complex system. Adapt-
ing and combining methods from different engineering disciplines were an
important prerequisite for our success. For a stringent deadline-oriented de-
velopment of such a system it is necessary to rely on a clear structure of the
project, a dedicated development process and an efficient engineering that
fits the project’s needs. Thus, we did not only concentrate on the single soft-
ware modules of our autonomously driving vehicle named Caroline, but also
on the process itself. We furthermore needed an appropriate tool suite that
allowed us to run the development and in particular the testing process as
efficient as possible. This includes a simulator allowing us to simulate traffic
situations and therefore achieve a sufficient coverage of test situations that
would have been hardly to conduct in reality. Only a good collaboration be-
tween the participating disciplines allowed us to develop Caroline in time to
achieve such a good result in the 2007 DARPA Urban Challenge.

In the long term, our goal was not only to participate in a competition
but also to establish a sound basis for further research on how to enhance
vehicle safety by implementing new technologies to provide vehicle users with
reliable and robust driver assistance systems, e.g. by giving special attention
on technology for sensor data fusion and robust and reliable system architec-
tures including new methods for simulation and testing. Therefore, the 2007
DARPA Urban Challenge provided a golden opportunity to combine several
expertise from several fields of science and engineering. For this purpose, the
interdisciplinary team CarOLO had been founded, which drew its members

Caroline: An Autonomously Driving Vehicle for Urban Environments 443

from five different institutes. In addition, the team received support from a
consortium of national and international companies.

In this paper, we firstly introduce the 2007 DARPA Urban Challenge and
derive the basic requirements for the car from its rules in section 2. Section
3 describes the overall architecture of the system, which is detailed in sec-
tion 4 describing sensor fusion, vision, artificial intelligence, vehicle control
and along with safety concepts. Section 5 describes the overall development
process, discusses quality assurance and the simulator used to achieve suffi-
cient testing coverage in detail. Section 6 finally describes the evaluation of
Caroline, namely the performance during the National Qualification Event
and the DARPA Urban Challenge Final Event in Victorville, California, the
results we found and the conclusions to draw from our performance.

2 2007 DARPA Urban Challenge

The 2007 DARPA Urban Challenge is the continuation of the well-known
Grand Challenge events of 2004 and 2005, which were entitled ”Barstow to
Primm” and ”Desert Classic”. To continue the tradition of having names re-
flect the actual task, DARPA named the 2007 event ”Urban Challenge”, an-
nouncing with it the nature of the mission to be accomplished.

The 2004 course, as shown in Fig. 1, led from the Barstow, California (A)
to Primm, Nevada (B) and had a total length of about 142 miles. Prior to the
main event, DARPA held a qualification, inspection and demonstration for
each robot. Nevertheless, none of the original fifteen vehicles managed to come
even close to the goal of successfully completing the course. With 7.4 miles
as the farthest distance travelled, the challenge ended very disappointingly
and no one won the $1 million cash prize.

Thereafter, the DARPA program managers heightened the barriers for en-
tering the 2005 challenge significantly. They also modified the entire quality
inspection process to one involving a step-by-step application process, includ-
ing a video of the car in action and the holding of so-called Site Visits, which
involved the visit of DARPA officials to team-chosen test sites. The rules for
these Site Visits were very strict, e.g. determining exactly how the courses
had to be equipped and what obstacles had to be available. From initially
195 teams, 118 were selected for site visits and 43 had finally made it into
the National Qualification Event at the California Speedway in Ontario, Cal-
ifornia. The NQE consisted of several tasks to be completed and obstacles to
overcome autonomously by the participating vehicles, including tank traps,
a tunnel, speed bumps, stationary cars to pass and many more.

On October 5, 2005, DARPA announced the 23 teams that would partici-
pate in the final event. The course started in Primm, Nevada, where the 2004
challenge should have ended. With a total distance of 131.6 miles and several
natural obstacles, the course was by no means easier than the one from the
year before. At the end, five teams completed it and the rest did significantly

444 F.W. Rauskolb et al.

Fig. 1. 2004 DARPA Grand Challenge Area between Barstow, CA (A) and Primm,
NV (B).

better as the teams the year before. The Stanford Racing Team was awarded
the $2 million first prize.

In 2007, DARPA wanted to increase the difficulty of the requirements,
in order to meet the goal set by Congress and the Department of Defense
that by 2015 a third of the Army’s ground combat vehicles would operate
unmanned. Having already proved the feasibility of crossing a desert and
overcome natural obstacles without human intervention, now a tougher task
had to be mastered. As the United States Armed Forces are currently facing
serious challenges in urban environments, the choice of such seemed logical.
DARPA used the good experience and knowledge gained from the first and
second Grand Challenge event to define the tasks for the autonomous vehicles.
The 2007 DARPA Urban Challenge took place in Vicorville, CA as depicted
in Fig. 2.

The Technische Universität Braunschweig started in June 2006 as a new-
comer in the 2007 DARPA Urban Challenge. Significantly supported by in-
dustrial partners, five institutes from the faculties of computer science and
mechanical and electrical engineering equipped a 2006 Volkswagen Passat sta-
tion wagon named ”Caroline” to participate in the DARPA Urban Challenge
as a ”Track B” competitor.

Track B competitors did not receive any financial support from the DARPA
compared to ”Track A” competitors. Track A teams had to submit technical
proposals to get technology development funding awards up to $1,000,000 in
fall 2006. Track B teams had to provide a 5 minutes video demonstrating
the vehicles capabilities in April 2007. Using these videos, DARPA selected
53 teams of the initial 89 teams that advanced to the next stage in the

Caroline: An Autonomously Driving Vehicle for Urban Environments 445

Fig. 2. 2007 DARPA Grand Challenge Area in Victorville, CA.

qualification process, the ”Site Visit” as already conducted in the 2005 Grand
Challenge.

Team CarOLO got an invitation for a Site Visit that had to take place in
the United States. Therefore, team CarOLO accepted gratefully an offer from
the Southwest Research Insitute in San Antonio, Texas providing a location
for the Site Visit. On June 20, Caroline proved that she was ready for the
National Qualification Event in fall 2007. Against great odds, she showed her
abilities to the DARPA officials when a huge thunderstorm hit San Antonio
during the Site Visit. The tasks to complete included the correct handling
of intersection precedence, passing of vehicles, lane keeping and general safe
behaviour. After the demonstration, the team returned to Germany together
with Caroline.

On August 9, the team received the results of the Site Visit event together
with an inivitation to the next stage of the qualification process: The National
Qualification Event in Victorville, California. Being a semi-finalist team, the
team returned at the end of September to the Southwest Research Institute
in San Antonio to finalize the development and tests. Three weeks later,
Caroline and the team arrived in Victorville, California and participated in
the National Qualification Event. To qualify for the Final Event, three courses
had to be mastered by the vehicles, each one covering a certain part of the
requirements. At the first course, called ”Track A”, the robots needed to
merge into moving traffic, ”Track B” required the handling of very long and
complex routes with stationary obstacles and ”Track C” tested intersections
and how the vehicles handle the blockage of roads. Demonstrating repeatedly

446 F.W. Rauskolb et al.

the performance of Caroline in all tracks of the National Qualification Event,
Caroline qualified early for the final stage, the DARPA Urban Challenge Final
Event held on November 3. In chapter 6, the overall performance of Caroline
in the National Qualification Event and the DARPA Urban Challenge Final
Event is illustrated.

3 System Architecture

Caroline is a standard 2006 Volkswagen Passat station wagon equipped with
a variety of sensors, actuators and computers to function as an autonomous
mobile robot. In front, two multi-level laser scanners, one multi-beam lidar
sensor and one radar sensor cover a field of view up to 200 meters for ap-
proaching traffic or stationary obstacles. In addition, four cameras detect and
track lane markings in order to allow precise lane keeping. The stereo vision
system behind the windshield and another color camera combined with two
laser scanners mounted on the roof were installed to provide information
about the drivability of the terrain in front of the vehicle. Very similar to the
front of the vehicle, one multi-level laser scanner, one medium range radar,
one lidar and two radar-based blind-spot-detectors enable Caroline to detect
obstacles at the rear. All these sensors are depicted in Fig. 3.

An array of automotive PCs mounted on a rack shown in Fig. 4 functions
as the hardware platform for a distributed software architecture with all
internal communication based upon Ethernet. The access to Caroline’s by-
wire steering, brake and throttle system as well as to other low level actuators

Fig. 3. The perception system.

Caroline: An Autonomously Driving Vehicle for Urban Environments 447

is provided through a CANLOG III command interface, which also connects
to the vehicle’s E-stop system to provide emergency stop functionality even
if the complete software system described below should fail. Regardless to
those lower level components described above, all computing and control
hardware is based on industrial PC technology, thereby reducing hardware
variety, simplifying failure management along with component replacement.

The development of Caroline is divided among a number of institutes and
disciplines, including faculties for computer science and mechanical and elec-
trical engineering. Mirroring this internal structure, Caroline’s architecture is
grouped into eight principal modules, interconnected with predefined inter-
faces as shown in Fig. 5: Sensor Data Acquisition, Sensor Data Fusion, Image
Processing, Digital Map, Artificial Intelligence, Vehicle Path Planning and
Low Level Control, Supervisory Watchdog and Online-Diagnosis, Telemetry
and Data Storage for Offline Analysis. Due to the intentionally linear signal
flow between each function module without major signal loops, we are able
to develop different modules independently and with minimum interference.

Starting at the bottom of this linear flow, the data acquisition unit pro-
vides necessary hard- and software modules to collect and process incoming
data from all active sensors for object recognition. Since all of the sensors
used are standard components originating from contemporary automotive
driver assistance systems, they are equipped with a Controller Area Network
(CAN) communication interface. Taking into account the limitation of this
bus standard regarding data throughput and determinism, a private sensor
CAN was chosen for each sensor to keep latencies small and to avoid bus
conflicts.

The acquisition of GPS and INS data (referred as Ego State in the fol-
lowing) was moved directly into the real-time vehicle control unit in order
to avoid large latencies within the closed loop dynamic control. The time of

Fig. 4. Computer rack and power supply.

448 F.W. Rauskolb et al.

Fig. 5. System architecture.

Caroline: An Autonomously Driving Vehicle for Urban Environments 449

day is obtained from the GPS and distributed via the network time protocol
(NTP) to all subsystems.

Incoming video data is sampled from the assigned IEEE 1394 interface,
preprocessed and interpreted directly on the image acquisition PCs to avoid
overload of the vehicle’s internal network by image data. Lane detection data
is directly passed to the artificial intelligence. The stereo vision system deliv-
ers 3D scan points along with area data describing the drivability of the road.
This data is fused with further scan points obtained from the laser scanners
and area data from the additional color camera observing the ground in front
of the vehicle. This fusion results in a drivability grid which is sent to the
artificial intelligence module.

Furthermore, following Caroline’s signal flow, sensor data of all object-
recognition sensors is processed within a central sensor data fusion unit as
described in section 4.1, which transmits the object-based vehicle’s surround-
ings containing all static and dynamic targets in Carolines field of view to
the digital map. The digital map combines online environmental informa-
tion with available offline information generated from mission definition files
(MDF) and route network definition files (RNDF) provided for the mission.
This combined data is the basis for the artificial intelligence to generate
driving decisions based on a Distributed Architecture for Mobile Naviga-
tion scheme (DAMN) as proposed by [Rosenblatt, 1997] and described in
section 4.3.

The driving commands obtained, e.g. ”follow a given road” are issued to
the soft real time control module, which carries out trajectory generation
and optimization based on driving dynamics of the vehicle. The driving tra-
jectories generated are then passed along into hard real time control that
addresses the vehicle actuators.

All modules previously described are supervised by a central watchdog
process with the possibility to kill and restart one or several processes, com-
puters or sensors independently. Thus, a maximum of self-healing capability
is installed in Caroline’s systems.

The visualization module is used during development in order to display
all exchanged object data. This data consists of e.g. obstacles, lanes, terrain
drivability, the planned path and mission data files. A recorder and a player
module which logs data for the purpose of offline-analysis, are also integrated
in this module.

4 System Modules

Caroline’s software system consists of five modules. Tasks to be mastered
in order to compete in the 2007 DARPA Urban Challenge are environment
recognition, road finding, situation assessment and vehicle control supervised
by a safety module. These core modules are described below.

450 F.W. Rauskolb et al.

4.1 Sensor Fusion

Perception is one of Caroline’s key systems. The system detects obstacles
as well as the drivability of the environment. The sensor fusion system is
separated in two parts. The first one is responsible for obstables, such as
other cars, walls or pedestrians. The other one takes care of the drivability
of the environment. Thus, it is possible to keep the car on the road even in
rough evironments. Based on this information, the artificial inteligence is able
to find a safe path through traffic. The perception system will be described
in greater detail in the following sections. The following section introduces
the sensor concept, followed by the object-based data fusion and end with
the grid based fusion of the drivability.

4.1.1 Sensor Concept

A variety of sensor types originating from the field of driver assistance sys-
tems were chosen to provide detection of static and dynamic obstacles in the
vehicle’s surroundings as depicted in Fig. 3:

• Dark green: A stationary beam LIDAR sensor placed in the front and
rear of the vehicle, have a range of approximately 200 meters with an
opening angle of 12 degrees. The unit has an internal preprocessing stage
and thus delivers its readings in an object oriented fashion, providing
target distance, target width and relative target velocity with respect to
the car’s fixed sensor coordinate frame.

• Red: 24 GHz radar sensors were added to the front, rear, rear left and
right side of the vehicle. While the center front and rear sensors provide
a detection range of approximately 150 meters with an opening angle of
40 degrees, the rear right and left sensors function as blind-spot detectors
with a range of 15 meters and an opening angle of 140 degrees due to
their specific antenna structure. The front sensor acts as a stand-alone
unit delivering object-oriented target data, such as position and velocity
through its assigned external control unit (ECU). The three radar sensors
in the rear section operate as a combined sensor cluster using an additional
ECU, providing object-oriented target data in the same fashion as the
front system. From the perspective of the post processing fusion system,
the three rear sensors can therefore be regarded as one unit.

• Blue: Two Ibeo ALASCA XT laser scanners were installed in the vehicle’s
front section, each providing an opening angle of 240 degrees with a de-
tection range of approximately 60 meters. The raw measurement data of
both front laser scanners is preprocessed and fused on their corresponding
ECU, delivering complex object-oriented target descriptions consisting of
target contour information, target velocity and additional classification
information. Additionally, the raw scan data of both laser scanners can
be read by the fusion system’s grid-based subsection.

Caroline: An Autonomously Driving Vehicle for Urban Environments 451

• Purple: One Ibeo ML laser scanner was added to the rear side, providing
similar detection capabilities as the two front sensors, with a reduced
opening angle of 180 degrees due to its mounting position. All Ibeo sensors
are based on a four-plane scanning principle with a vertical opening angle
of 3.2 degrees between the top and bottom scan plane. This opening angle
enables smaller pitch movements of the vehicle to be covered.

• Green: Two SICK LMS-291 laser scanners were mounted on the vehicle’s
front roof section. These scanners are based on a single-plane technol-
ogy. They were set to measure the terrain profile at 10 and 20 meters,
respectively. The view angle was limited to 120 degrees by software.

• Light blue: A stereo vision system mounted behind the vehicle’s front
window covers an area of approximately 60 degrees within a range of 50
meters, providing 3-dimensional terrain profile data for all stereo vision
points retrieved. A simple classification into the driveway, curb and ob-
stacles classes is also available.

• Orange: A USB-based color mono camera installed on the front roof sec-
tion, covering an opening angle of approximately 60 degrees.

The sensors view areas are shown in Fig. 6. These view areas overlap for
a more reliable view of the environment.

Fig. 6. Sensor view areas.

452 F.W. Rauskolb et al.

ECU ECU

ECU ECU

Front Data Acquisition

Rear Data Acquisition

Tracking + Data Fusion

front

rear

Color
Analysis

Object Data

Object Data

C
A

N
C

A
N

E
th

e
rn

e
t

Stereo
Preprocessing

Grid Fusion

Drivability,
Height Profile

Surface Data, Classification

Classification Surface Data

Fig. 7. Fusion architecture.

The sensor architecture described reflects the hybrid post-processing
scheme applied. While the first four sensors deliver their data in an object-
oriented fashion and are therefore treated within the system’s object tracking
and data fusion stage, the three last sensors described are evaluated based on
their raw measurement data in the grid-based subsection. A distributed data
fusion system consisting of three interconnected units was set up. In order to
equally balance the available computing power, the object tracking system
was split into two independent modules, covering the front and rear sections
independently. Therefore, two automotive computers carry out data acquisi-
tion and data fusion of the front and rear object detecting sensors, while the
third PC is used to fuse the raw sensor readings of the SICK scanners, stereo
vision system and mono color camera as shown in Fig. 7.

4.1.2 Object Tracking Fusion

The object fusion system is based on a pipes and filters pattern as depicted
in Fig. 8. All incoming sensor data is queued and then processed sequentially
using a first in - first out strategy. Within the first step, data association is
carried out in order to assign incoming sensor objects to their corresponding
tracks in the fusion system that are taken from a real-time track database.
In case of a positive match between an existing track and incoming sensor
object, this pairing is then pushed into the processing queue of the system’s
Extended Kalman Filter in order to correct the track with new measurement
data. If no match can be found, the sensor object is regarded as a potential

Caroline: An Autonomously Driving Vehicle for Urban Environments 453

Laserscanner Front

Extended Kalman FilterPretracking

Data Association

Laserscanner Rear Radar Front Radar Rear

Track Database

Fusion Input Queue

...

Track ID 0

Track ID 1

Track ID 2

Track ID 3

Pretrack Database

...

Pretrack ID 0

Pretrack ID 1

Pretrack ID 2

Pretrack ID 3

Track
Initialization

Sensor Sweeps

Data Acquisition, Timestamping and Transformation

Lidar Front Lidar Rear

Track Managment

Fig. 8. Object fusion system architecture.

new target and pushed into the pretracking system. Within pretracking, sen-
sor data is justified against time and all other sensors taking into account
sensor redundancy where applicable. Pretracking and data association will
be described later in greater detail.

If a sensor object has reached a certain level of justification, a new track
will be instantiated and pushed into the real-time track database. Parallel
to data association, pretracking and final object tracking, a track manage-
ment unit periodically scans the track database for “dead“ tracks - i.e. fusion
objects that have not been updated for a certain amount of time. In addi-
tion to this garbage collection, all valid tracks are compared to each other
for track merging and track splitting, which is necessary to handle situations
including a passenger entering or leaving his vehicle or any other situation
where two objects in the real world converge or split. Instead of transferring
a whole track database image to downstream modules, create, update and
delete messages of the track database are issued via the network. Every client
is then capable of maintaining it’s own track database. Therefore, network
load can be significantly reduced without any loss of information.

Data Association and Pretracking. Data association and pretracking
have a key functionality within Caroline’s fusion system. Imperfect data as-
sociation leads inevitably to incorrect tracks, whereas incorrect track initial-
ization during pretracking leads to imperfect data association, since correct
tracks and false alarms will then compete for incoming measurement data.

454 F.W. Rauskolb et al.

With this central position, the association and pretracking stage dominates
the state estimator in the main tracking stage, since no state estimator can
transform falsely associated sensor readings into useful update information for
a track. In classical tracking approaches where objects are mostly described
through a state vector consisting of a generalized object position, velocity
and, if applicable, further derivatives of these quantities, data association
can be performed in a point-to-point matching process.

Within Caroline’s fusion system, these approaches had to be extended in
order to handle spread objects with complex shapes. Three different types
of sensor objects have to be processed: complex contours delivered by laser
scanners, line-shaped objects delivered by the LIDAR system and classical
point-shaped objects received from radar sensors. It is not possible to define
a common general object position seen by all sensors, since each sensor will
most likely see the target differently. For example the point of reflection
delivered from a radar is unknown compared to precise contour measurements
gained from a laser scanner. Additionally, as the vehicle moves through the
real world, the point of reflection of each sensor type moves on the outline of a
real-world object. Therefore a multi-point track model was chosen, describing
a detected object by an arbitrary number of contour points and postulating
a common movement vector following a rigid body assumption. This way
each contour measurement can be matched to the tracked contour point with
the best fit. A two-staged data association process was set up, with the first
stage serving as a justification as to whether or not track and measurement
describe the same real-world object and in the second stage then calculating
the optimal contour association between measured and tracked object points.
Within stage one, a weighting function counting for the minimum Euclidian
distance and similarity of velocities is calculated,

wi,j = a · min[|xi
k − xj

l |, ∀k, l] + b · |vi − vj | (1)

with wi,j being a scalar weight for association between track i and measure-

ment j with tracked and measured velocity vectors vi, vj , xi
k, xj

l being the
kth and lth contour point position of track i and measurement j and a, b
serve as tuning parameters. A threshold for this weight is further defined and
an association below that threshold level will be pushed into stage two.

In stage two, an optimal match between all measured and tracked contour
points is calculated based on an association matrix ,

Ω =

⎡

⎣

|xi
1 − xj

1| . . . |xi
1 − xj

l |
.

|xi
k − xj

1| . . . |xi
k − xj

l |

⎤

⎦ (2)

Optimization can be carried out with standard algorithms such as the
Hungarian/Munkres method, Nearest Neighbor or similar approaches. We
used the fast Minimum-algorithm. This two-staged association process avoids
unnecessary computational load on the system, since unlikely associations will

Caroline: An Autonomously Driving Vehicle for Urban Environments 455

be filtered out in stage one while the computational challenging minimization
is only carried out for positive matches.

During pretracking, incoming sensor data is first associated with prelimi-
nary track objects (pretracks) using methods similar to those described above.
A pretrack carries along a vector of sensor assignments, storing for each sen-
sor type the last assigned sensor object id. A simple Kalman filter based on a
constant velocity motion model is calculated for each pretrack to update its
position given by incoming sensor data. In addition to the vector of sensor
assignments, an update counter is carried along storing the number of posi-
tive association events. Taking into account sensor redundancies read from a
configuration file, a threshold for track activation is evaluated based on this
update counter, depending on the level of redundancy in the affected obser-
vation area of that object. A simple description language was implemented
to efficiently model these redundancies and to influence the update count
threshold for track activation, e.g.:

polygon={0,2;10,2;10,-2;0,-2}

modifyCount=2000

condition=(RADARFront && !(LASERFront || LIDARFront)),

which means for the fusion system ”Activate track in a 2 x 10 meter, box-
shaped view area after 2000 positive matches when it is only seen by the
front radar system and not by the laser scanners or LIDAR sensors“, which,
in this case, serves as protection against random, unstable false alarms from
the radar sensor directly in front of the vehicle.

Tracking and Data Fusion. For the main tracking algorithm, a model-
switching Extended Kalman Filter, based on two track motion models was
implemented. A six-dimensional motion model describes fast-moving objects
using a state vector,

x6D =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1...n

y1...n

v
a
α
ω

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3)

with x1...n and y1...n being the x and y coordinate of the n contour points, the
common velocity, acceleration, course angle and course angle velocity with
respect to the global earth-fixed reference frame. For slow or static objects,
a simpler four-dimensional state vector was chosen,

x4D =

⎛

⎜

⎜

⎝

x1...n

y1...n

v
a

⎞

⎟

⎟

⎠

(4)

thus taking into account that the majority of detected objects are of a rather
static nature and distribution of available sensor information in unnecessary

456 F.W. Rauskolb et al.

many state variables is suboptimal in that case. As seen in equations (4) and
(5), the classical state vector has been enriched by the number of contour
points, thus making it necessary to extend the Kalman Filter algorithm (see
[Kalman, 1960] for reference) to handle multiple positions within the same
state vector. Similarly, we define the sensor measurement vector for a sensor
object consisting of m contour points,

y =

⎛

⎜

⎜

⎝

x1...m

y1...m

vx

vy

⎞

⎟

⎟

⎠

(5)

with x1, y1, vx, vy being measured contour point x- and y-coordinates as well
as x- and y-velocity components with respect to the global earth fixed refer-
ence frame. Postulating a common position noise covariance for all contour
points within track and measurement, the update algorithm can be extended
as follows:

xk(v + 1|v) = f(xk(v))

P (v + 1|v) = FT · P · F + Q

sk,l = yl(v + 1) − h(xk(v + 1|v))

S(v + 1) = H · P (v + 1|v) · HT + R

K(v + 1) = P (v + 1|v) · HT · S(v + 1)−1

rk,l(v + 1) = K(v + 1) · sk,l(v + 1) (6)

with xk being the track state vector regarding contour point k, f(x) the non-
linear system transfer function, P the common state covariance matrix, F the
system transfer Jacobian, Q the system noise covariance, sk,l the innovation
vector of tracked contour point k compared with measured point l of the as-
sociated sensor object, yl the sensor measurement vector regarding measured
point l, h(x) the nonlinear system output function, S the common innovation
covariance matrix, H the system output Jacobian, R the estimated measure-
ment noise, K the Kalman gain in this update cycle and rk,l the correction
vector for tracked contour point k getting updated with measured point l.

The tracked contour points can then be updated by adding the first two
components of the associated vector rk,l. In order to calculate updated com-
mon velocity, acceleration, course angle and course angle velocity in the six
dimensional movement model, the mean value for vector rk,l is calculated
over all given contour point associations,

rmean =
1

N

N
∑

k,l=1

rk,l (7)

with N being the total number of acquired contour point matches within
the second stage of data association. Corrected common values can then be

Caroline: An Autonomously Driving Vehicle for Urban Environments 457

acquired by adding the last four components of vector rmean to the corre-
sponding elements in the track state vector.

Obviously, by postulating a common system and measurement noise co-
variance for all contour points, Kalman gain can be computed once per update
cycle. While it would theoretically be possible to calculate a separate Kalman
gain for each tracked contour point and therefore removing the limitations to
system and measurement covariance, this would lead to a N-times bigger com-
putational load, since matrix inversion of the system innovation covariance
matrix is the most costly part of the algorithm. In this case, the algorithm
would simply calculate a separate Kalman filter for each contour point, which
is not practically realizable in a real-time application. In the approach de-
scribed we have no significantly higher computational effort compared to a
standard EKF, while at the same time realizing spread-contour functionality
and removing the need for a stable point of reference for tracked objects.

In order to prevent the track from being flooded with contour points, a
garbage collection mechanism was installed by carrying along update counters
for each contour point, which stores the last update timestamp and the overall
number of updates counted to that point in time. In this manner, inactive
contour points can be detected easily and removed from the track’s point list.

Object splitting and termination. Because of the track’s polyline object
model, it is necessary to implement a track splitting algorithm. If there is no
such method, one track can collect points from many objects and grow to a
rather huge but meaningless track. For example, a person dropping off a car
and moveing away would still be part of the car track because of the data
association algorithm depiced in Fig. 9. When the person just dropped off
and is still near the car, it will become one track. After moving away from
the car, the contour points will still be updated because there is an object at
the position of the car and the person is also still there. Between these two
objects there is nothing but the polyline from the track still describing an
outline of an object.

To detect these false tracks, an algorithm was developed to split such
tracks. The basic idea is to examine the objects based on the raw sensor
object data and find indepented sets of objects. These independent sets will
become the new tracks. Normally, there are no such sets but in the event of
an unsplit track, there are two or more partitions. Polygonal objects around
the track will be described as a planar undirected two colored graph. The
algorithm contains the following steps:

1. Build planar undirected colorable rectangular graph. set the color of every
node to black.

2. Set the polylines of every sensor object of the track to white.
3. Search for independend sets in the graph[Cormen et al., 2002].
4. If there is more than one set found, build new tracks from the points

describing the outlines.

458 F.W. Rauskolb et al.

Fig. 9. Person who drops off a car. From left to right: Person still in the car, person
just dropped off, person moves away. From top to bottom: Reality, track without
splitting, track after splitting.

The algorithm runs periodically during track garbage collection. Although
complexity depends on the maximal area (a) covered by a track (O(a)), this
algorithm can be implemented efficiently with graphic libraries.

4.1.3 Grid-Based Fusion

In contrast to the object tracking subsystem, the grid fusion system does not
describe agents in the vehicle’s environment with discrete state vectors, but
instead discretizes the whole environment into a rectangular matrix (grid)
structure. Each grid cell carries a number of assigned features:

• a height value expressed in the global earth fixed reference frame,
• a gradient value describing the height difference to neighboring cells,
• a set of Dempster-Shafer probability masses counting for the hypotheses

undrivable, drivable and unknown,
• a status flag stating whether or not measurement data has been stored

within the corresponding cell and
• an update time stamp storing the last time a cell update was carried out.

Data Structure. The biggest challenge with grid based models in an au-
tomotive environment is the need for real time operation. High maneuvering
speeds in automotive applications require update rates greater than 10 Hz,
which is almost too low since this equals a travel distance of 1.4 meters at
normal urban speeds. The approach of discretizing the environment into grid

Caroline: An Autonomously Driving Vehicle for Urban Environments 459

cells leads to significantly high memory requirements and therefore calls for
efficient data structures. As an example, the storage of a view area of only
100 x 100 meters with a resolution of 25 centimeters generates 160,000 grid
cells. Assuming a 4-byte floating point value for each feature as described
above, this grid extends up to 3 MByte. Together with an update rate of 10
Hz this leads to a constant data throughput of 256 MBit/s, which in any
case is more than the standard automotive bus infrastructure would be able
to handle. Efficient algorithms and data reduction prior to serialization is
therefore the key to a successful application. For addressing these issues we
implemented a rolling grid data structure wherein the vehicle’s own position
is a pointer to the corresponding grid cell. This position will be regarded
as virtual origin for all incoming sensor readings, which can then be subse-
quently accessed by moving through the double linked data structure rela-
tive to that virtual origin. The main grid is again subdivided into sub grids
whose size match the processor’s caching mechanism for optimal usage of
the available computing resources. While it would theoretically be possible
to make the surface large enough to cover the expected maneuvering area,
this would lead to extremely high memory usage and is therefore not feasible.
Instead, when the vehicle moves through the world, the reference point shifts
along the double linked spherical list. As soon as it crosses the border from
one sub grid to the next, the corresponding sub grids at the new horizon
of the data structure are cleared and are therefore available for new data
storage.

Treatment of laser and stereo vision point data. As the first step
within grid data fusion, the 3-dimensional point clouds received from the
laser scanners and stereo vision system are transformed into the global earth
fixed reference frame taking vehicle attitude into account (roll, pitch and
yaw) as acquired from the GPS/INS unit and sensor-specific calibration in-
formation. The accuracy of these transformations is crucial to subsequent
post-processing. Vehicle height as delivered by the GPS is especially impor-
tant and is therefore subject to further filtering and justification. For each
measured point, the corresponding grid cell is retrieved and a ray tracing
algorithm (Bresenham) is carried out to update all cells from the sensor co-
ordinate system’s origin to the measured target point. Several versions of
the Bresenham algorithm are described in the literature, in this case we will
introduce the 2D version following Pitteway [Pitteway and M.L.V., 1967] for
reasons of simplicity.

The lines are traced similar to the functionality of a plotter, which is
basically the origin of that algorithm. On the way through the traced lines,
each cell passed is updated according to following rules:

• If the cell lies on the path between sensor origin and measured target
point and it’s height value exceeds the current Bresenham line height
value, reduce the stored value to that of the current Bresenham line.

460 F.W. Rauskolb et al.

old values

sensor origin

target point

new values

Fig. 10. Ray update mechanism.

• If the cell is the end point of the Bresenham line, store the associated
height value.

• In both cases, store update time stamp and mark that cell as having been
measured.

The grid is updated following the direct optical travel path of any laser
ray (or virtual stereo vision ray) starting at the sensor origin and ending at
the target point as depicted in Fig. 10. This model follows the assumption
that any obstacle would block the passing optical ray and therefore any cells
on the traveling path must be lower than the ray itself.

Data Fusion. Parallel to entering the 3-dimensional point data acquired
from laser scanners and stereo vision, vision-based classification is processed
using a Dempster Shafer approach [Shafer, 1976, Shafer, 1990]. A sensor
model was created for each data source, mapping the sensor specific clas-
sification into the Dempster Shafer probability mass set, which can then be
fused into the existing cell probability masses using Dempster’s rule of com-
bination,

m∗
c(A) = mc(A)

⊕

mm(A) =
1

1 − K

∑

B∩C=A �=∅

mc(B)mm(C), (8)

with mc, mm being the cell and measurement probability mass set and m∗
c

the combined new set of masses for the regarded cell, while the placeholders
A, B and C can describe any of the three hypotheses drivable, undrivable
and unknown. The term K expresses the amount of conflict between existing
cell data and incoming measurement, with

K =
∑

B∩C=∅

mc(B)mm(C). (9)

The mass set mm has to be modeled out of the acquired sensor data.

Caroline: An Autonomously Driving Vehicle for Urban Environments 461

With respect to the stereo vision system, which is capable of classifying
retrieved point clouds into the classes road, curb and obstacle, this mapping
is trivial and can be done by assigning an appropriate constant mass set
to each classification result. The exact values of these masses can then be
subject to further tuning in order to trim the fusion system for maximum
performance given real sensor data.

In the case of the mono vision system, Caroline assigns each pixel in the
retrieved image a drivability value Pd between 0.0 representing undrivable
and 1.0 representing fully drivable; a mapping function is then applied, which
creates the three desired mass values D: drivable, U : undrivable and N :
unknown, that can be either drivable or undrivable as follows:

mm(D) = Dmax · Pd,

mm(N) = (1 − Dmax),

mm(U) = 1 − mm(D) − mm(N). (10)

The value Dmax will serve as a tuning parameter, influencing the maximum
trust placed into the mono vision system and based on the quality of its in-
coming data. Both, the classification mechanism of the stereo vision system
would be beyond the scope of this paper and will therefore not be explained
in detail. Basically, classification within the stereo system is based upon gen-
erating a mesh height model out of the point cloud obtained and applying
adaptive thresholds to this mesh structure in order to characterize roadway,
curb and obstacles. The mono vision system is based on a similar approach
to [Thrun et al., 2006].

Prior to mapping the mono vision data into the grid data structure, the
image must be transformed into the global world reference frame using the
known camera calibration [Heikkil and Silvn, 1996] and height information
which can easily be retrieved from the grid itself.

The creation of a sensor model for the 3-dimensional height data is more
complex: First, a gradient field is calculated from the stored height profile.
In Caroline’s grid fusion system, the grid is mapped into image space by
converting into a grayscale image data structure, with intensity counting for
cell height values. Subsequently, the Sobel operator is applied in both image
directions.The results of both convolutions are summed and - after proper
normalization - transformed back into the grid structure, storing the gradient
values ∂h

∂x∂y
for each grid cell. Any existing obstacle will usually lead to a

bigger peak within the gradient field, which can easily be detected. During
the process of forward and reverse transformation, the grid structure in- and
out of a grayscale image would initially appear to be redundant, because the
gradient operator could easily be applied to the height field itself. Yet, by
transforming the information into a commonly used image format, the broad
variety of image processing algorithms and operators found in standard image
processing toolkits, such as the OpenCV library [OpenCV Website, 2007] can
easily be applied, thereby significantly reducing development time.

462 F.W. Rauskolb et al.

The acquired gradient values will then subsequently be mapped into a
Dempster-Shafer representation, which leads to the desired sensor model com-
bining all acquired height values. Similar to the method with the mono vision
system, a mapping function is defined as follows:

mm(D) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Dmax,
∣

∣

∣

∂h
∂x∂y

∣

∣

∣
≤ GDmax

0, GDmax
<

∣

∣

∣

∂h
∂x∂y

∣

∣

∣
≤ GUmin

0,
∣

∣

∣

∂h
∂x∂y

∣

∣

∣
> GUmin

mm(U) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0,
∣

∣

∣

∂h
∂x∂y

∣

∣

∣ ≤ GDmax

Umax

GUmin
−GDmax

·
(∣

∣

∣

∂h
∂x∂y

∣

∣

∣
− GDmax

)

, GDmax
<

∣

∣

∣

∂h
∂x∂y

∣

∣

∣
≤ GUmin

Umax,
∣

∣

∣

∂h
∂x∂y

∣

∣

∣
> GUmin

mm(N) = 1 − mm(D) − mm(U), (11)

with Dmax and Umax serving as parameters for maximum drivability/
undrivability assigned to the gradient field, GDmax

being the maximum gradi-
ent value that is still considered to be fully drivable and GUmin

the minimum
gradient value that is considered to be fully undrivable. By carefully tuning
those four parameters, it is possible to suppress unwanted smaller gradients
resulting e.g. from unimportant depressions and knolls in the road while
supporting higher gradients as originating from curbs or berms in order to
correctly fuse this information into the grid cells by using Eq. 8.

4.2 Vision

Caroline’s computer vision system consists of two separate systems. The first
is a monocular color segmentation based system that classifies the ground in
front of the car as drivable, undrivable or unknown. It assists in situations
where the drivable terrain and the surrounding area (e.g. grass, concrete
or shrubs) differ in color. The output of this algorithm contributes to the
Grid Based Fusion as described in section 4.1.3. The second vision system
is a multi-view lane detection that identifies the different kinds of lanes de-
scribed by DARPA, such as broken and continuous as well as white and yellow
lane markings. Using four high-resolution color cameras and state-of-the-art
graphics hardware, it detects its own lane and the two adjacent lanes to the
left and right with a field of view of 175 degrees at up to 35 meters. The
output of the lane detection algorithm is directly processed by the artificial
intelligence.

4.2.1 Lane Detection

Detecting lane markings on roads in an urban environment is a difficult but
very important task. While concepts exist that depend on additional mark-
ings, such as magnetic bands in the street, a more useful method must make
intelligent use of what is available on today’s roads. Towards this goal, we

Caroline: An Autonomously Driving Vehicle for Urban Environments 463

Fig. 11. The four stages of the lane detection algorithm.

developed a lane detection system that is capable of analyzing several high-
resolution images simultaneously and in real-time. Our lane fitting algorithm
uses a very versatile lane model and is robust with respect to outliers and
artifacts. It also takes into account lane markings of adjacent lanes. It copes
with different road setups, lane markings and lighting situations. The lane
detection process is divided into four parts, as shown in Fig. 11. First, the
raw images are downloaded from the cameras via the IEEE1394b interface.
Second, they are uploaded to graphics hardware, the color information is re-
trieved from the raw Bayer pattern, and the images are transformed into a
single top view perspective, Fig. 12. Third, lane marking features are detected
in the image, Fig. 14. In the last step, a lane model is adjusted to match the
features detected.

Data Acquisition. Three cameras with field of view of 58 degrees cover
the area in front of the car. A 22 degrees telephoto lens camera provides a
high-resolution view of the street ahead of the car. The four 1376x600 8-bit
raw Bayer images are synchronously acquired via the IEEE1394b interface at
14 frames per second. The images are uploaded to the graphics card and con-
verted to the RGB color space using bilinear interpolation. As the lane fitting
algorithm works in a global coordinate system, the position and rotation of
the vehicle, also referred to as Ego State, must be available. A transforma-
tion function fego : pcar �→ pworld can be defined if the Ego State is known,
where pcar is a point in the car’s reference system, and pworld is a point in a
global Cartesian reference system. An Inertial Measurement Unit corrected
by a GPS signal was used to generate the Ego State.

Multi-View Fusion. Because local changes of the light intensity are an
indicator for white lines, and local saturation changes indicate colored lane
markings, the RGB images are converted to the HSV color space. This color
space encodes saturation and color in separate channels. Knowing the intrin-
sic and extrinsic parameters of the camera, and including the orientation of
the vehicle (pitch and roll), a lookup function that converts top view coor-
dinates to image coordinates can be used to create a single HSV top view
image. The lookup operation is applied to each source image. In regions where

464 F.W. Rauskolb et al.

Fig. 12. The four different images (a, RGB color space used for visualization) are
merged to a single HSV top view image (b).

the projected images overlap, precedence Itele > Imiddle > Ileft > Iright is
maintained as shown in Fig. 12. The region of interest covers the area of up
to 30 meters in front of the vehicle and 12 meters to the left and right at a
scale of 35 pixels per meter.

Features. Lane markings can be described as a thin pattern of local dif-
ferences of the road surface that cover long distances. Therefore, the basic
concept underlying feature detection involves identification of these local dif-
ferences in regions of 8x8-pixels that resemble road patches of approximately
25 by 25 centimeters. Analyzing the HSV top view image, the feature de-
tection’s output is a downsampled feature image that encodes the quality,
direction and color, i.e., white or yellow, of the lane features in Fig. 14. As
lane markings exist in various colors, qualities as well as widths, and appear
differently under changing lighting conditions, only few stringent assump-
tions apply. When analyzing the top view image for features, we check three
criteria that must be present:

1. The local contrast vdiff must exceed a certain threshold. The local con-
trast is the difference between the local minimal and maximal value
vdiff = vmax − vmin.

2. Analyzing a local adaptive histogram, the distance bdiff between the
two largest bins bhigh and blow must exceed a certain threshold. This is
because it can be assumed that blow contains pixels depicting the street
and bhigh identifies the lane marking.

3. The pixels in bhigh must have a recognizable shape and orientation. For
several discrete orientations, the ratio of the variances of the pixels’
x- and y-coordinates is checked.

Caroline: An Autonomously Driving Vehicle for Urban Environments 465

A detailed description is given in Alg. 1. As this algorithm is prone
to discretization errors, supersampling improves the quality of the feature
detection.

Data: An 8x8 region of a HSV top view image, thresholds tcon, thist, tdir and
tcol

Result: A feature quality q, direction a ∈ {0, 22.5, ..., 157.5} and color
c ∈ {white, yellow, undecided}

for the saturation and lightness channel do1

vdiff = vmax − vmin; vmax and vmin are the maximal and minimal values2

of the current channel
if vdiff < tcon then3

break;4

end5

compute adaptive histogram;6

determine two largest bins bhigh and blow, Fig. 13(b) ;7

bdiff = bhigh − blow;8

if bdiff < thist then9

break;10

end11

set of pixels phigh = pixels in bhigh;12

determine center of mass R of phigh;13

initialize rmax and amax to 0;14

for i = 0; i <= 157.5; i = i + 22.5 do15

rotate phigh around R by i degrees. determine ratio of variances16

r = V ar(X)
V ar(Y)

;

end17

if rmax < tdir then18

break;19

end20

label this region as a feature;21

if current channel is lightness then22

qwhite = bdiff ; awhite = amax23

else24

qyellow = bdiff ; ayellow = amax25

end26

end27

if qwhite > tcol & qwhite > qyellow then28

c = white; a = awhite29

end30

if qyellow > tcol & qyellow > qwhite then31

c = yellow; a = ayellow32

end33

q = max(qwhite, qyellow);34

Algorithm 1. Feature detection algorithm.

466 F.W. Rauskolb et al.

(a) 8x8 regions are analyzed (b) 8 bin histogram of the 8x8 region

Fig. 13. 8x8-pixel regions of the top view image (a, up) are tested for possible
features. The distance between the two largest bins blow (b, blue) and bhigh (b, red)
of the histogram determines the quality of the feature. The pixels gathered in bhigh

must be arranged in a directed shape (a, red area).

Lane Model. The lane model consists of connected lane segments. Each
segment si is described by a length li (given parameter), a width wi and
an angle di = αi − αi−1 describing the difference of orientation between
this segment and the previous one as shown in Fig. 16. The first segment is
initially placed on the current coordinates of the vehicle and facing in the
driving direction, assuming that the vehicle is actually located on the street.
Knowing the position c0 of the initial segment as well as the lengths li and the

Fig. 14. The direction (a), color (b) and quality (c) of the features are encoded in
an RGB image downloaded from the graphics card. For visualization purposes, the
channels encoding the direction (a) and color (b) are colorized.

Caroline: An Autonomously Driving Vehicle for Urban Environments 467

(a) labeling and discarding (b) mixing

Fig. 15. Regions of interest (a, blue boxes) determine to which lane marking fea-
tures are assigned. Afterwards, old and new features are mixed (b).

angular changes di of all segments, the position pi and global orientation αi of
each segment can be computed. Each segment contains information whether
the vehicle’s lane is confined by lane markings and whether additional lanes
to the left and right exist. Straight streets, sharp curves and a mixture of
both can all be described by the model.

Lane Fitting. The main goal of the lane fitting algorithm is to find a pa-
rameter set for a lane model that explains the features found in the current
top view image and the previous frames. In order to create a global model
of the lane, all feature points are mapped to world space coordinates and
inserted into a list lp. This is done using the function fego : pcar �→ pworld

defined by the current Ego State. Old data, i.e. feature points gathered dur-
ing previous frames, may be kept if the features of a single image are too
sparse. For each frame, the existing lane model or an initial guess is used
to define four regions of interest as shown in Fig. 15(a). These are the re-
gions expected to contain the own lane’s markings and the lane markings
of the adjoining lanes. If a feature is inside such a region, it is labeled as
outer left, left, right or outer right. Otherwise, it is discarded. After-
wards, features from previous frames are mixed with the new data as depicted
in 15(b).

As the first currently visible segment sf of the lane model is determined,
older segments are no longer considered. If the list of lane segments is empty,
it is initialized with s0 ← sf . Starting from sf , each segment si is estimated
(or reestimated if it has previously been estimated). Therefore, an initial guess
as to the orientation αi of si is made as shown in Fig. 16. All local features
relevant for estimating si are rotated by αi around the starting point pi

of si. A RANSAC algorithm is used to estimate the parameter di and wi:
Iteratively, two feature points px and py are chosen. Assuming that they are
located on the lane markings they were labeled for, the gradient gi = mi/li as

468 F.W. Rauskolb et al.

(a) estimating segment si (b) RANSAC fitting

Fig. 16. pi, αi, li and lgap identify the features relevant for si. After rotating
around αi, a RANSAC fitting eliminates outliers among the features.

well as the width wi are derived from their coordinates. All features that are
also sufficiently described by gi and wi are counted as inliers. This process
is repeated n times and the parameter set with most inliers is used to define
si. A quality function q takes into account the ratio of inliers and outliers,
the amount of inliers, the quality of the features and states the quality of
the segment. The quality is computed for every region of interest (outer left,
left, right and outer right). If the maximum of these qualities exceeds a
threshold tq, the segment is considered to be valid and the next segment si+1

is estimated. After all segments are estimated as shown in Fig. 17, a proposal
about the lane markings’ colors can be made by looking at the inliers’ average
color.

Results and Evaluation. The algorithm was thoroughly tested on several
sites in northern Germany and Texas. A frame rate of 10 fps could be main-
tained using a 2 GHz Intel Core 2 Duo with a GeForce 7600 GTS graphics
card. The testing sessions included different weather and lighting conditions.
The amount of false positives was reduced significantly by utilizing the ve-
hicle’s other sensors. The objects detected by lidar and radar sensors were
used to mask out regions in the feature image where other cars, walls, cones
and poles caused irritating artifacts in the top view image.

4.2.2 Area Processor

The Area Processor consists of a single IDS color camera whose images are in-
terpreted by a color segmentation algorithm suitable for urban environments.
This algorithm separates an image into areas of drivable and non-drivable ter-
rain. Assuming that a part of the image is known to be drivable terrain, other
parts of the image are classified by comparing the Euclidean distance of each

Caroline: An Autonomously Driving Vehicle for Urban Environments 469

Fig. 17. The lane model reprojected onto the original images.

pixel’s color to the mean colors of the drivable area in real-time. Moving the
search area depending on each frame’s result ensures temporal consistency
and coherence. Furthermore, the algorithm classifies artifacts such as white
and yellow lane markings and hard shadows as areas of unknown drivabil-
ity. Although Caroline is able to perform basic driving tasks without this
algorithm, it is needed in situations when terrain cannot be distinguished
by other sensors, i.e., sections without proper lane markings, streets without
high curbs and off-road tracks.

Related work. As a foundation for the area detection algorithm we used the
real-time approach suggested by Thrun et al. [Thrun et al., 2006] in the 2005
DARPA Grand Challenge. The basic idea is to consider a given region in the
actual image as drivable. The predominant mean color values in that area are
retrieved and compared to the pixel values in the entire image. Similar pix-
els are marked as drivable. The algorithm was designed for off-road terrain,
therefore it cannot be applied to urban scenarios without fundamental modi-
fications. We will describe the algorithm in the next section. The Expectation
Maximization (EM) algorithm used for color clustering in this approach is
thoroughly described in [Duda and Hart, 1973] and [Bilmes, 1997]. Instead of
the EM algorithm, the KMEANS algorithm that we used during the competi-
tion is also suitable for color clustering, as described in [Gary Bradski, 2005].
An algorithm similar to the one mentioned above points out the advantage
of other color spaces than RGB [Ulrich and Nourbakhsh, 2000], e.g., the HSI
space.

The Stanford University algorithm for detecting drivable terrain.

The main idea of the algorithm is to use the output of the laser scanner,
normally a scan-line, which is integrated over time to a height map in world
coordinates. A polygon is defined that covers an area in front of the car identi-
fied as level and therefore as a drivable surface. This polygon is transformed
into image coordinates from the camera and clipped to the image bound-
aries. The resulting polygon is considered as the area that is drivable. In this

470 F.W. Rauskolb et al.

Fig. 18. The drivability grid (b) depicts the output of algorithm, the results dif-
fer from black (undrivable) to white (drivable) . A yellow line (a) is marked as
undrivable (b, black) because the color differs by too much from the street color.

area the pixels’ color values are collected and clustered by color, for example
bright grey and yellow. These color clusters are compared to the color values
of each pixel in the image using distance measurements in the color space.
If a resulting distance is smaller than a given threshold, the area comprised
by the pixel is marked as drivable. The main benefit of the algorithm is that
the range in which drivability can be estimated is enhanced from only a few
meters to more than 50 meters.

Problems arising in urban and suburban terrain. Designed for com-
peting in a 60 mile desert course, the basic algorithm succeeds well in explicit
off-road areas, which are limited by sand hills or shrubs. When tested in ur-
ban areas new problems occur, because there are streets with lane markings
in different colors or tall houses casting long shadows. The yellow lane mark-
ings are often not inside the area of the polygon PScanner (output of the
laser scanner), so they are not detected as drivable. Especially non-dashed
lines prohibit a lane shift as shown in Fig. 18 and stop lines seem to block
the road.

Another problem are shadows cast by tall buildings during the afternoon.
Small shadows from trees in a fairly diffuse light change the color of the street
only slightly and can be adapted easily. But huge and dark shadows appear as
a big undrivable area as shown in Fig. 19. Even worse: Once inside a shadowed
area, the camera auto exposure adapts to the new light situation, such that
the area outside the shadow becomes overexposed and appears again as a big
undrivable area as depicted in Fig. 20.

Another problem during the afternoon is the car’s own shadow, in this
paper referenced as "egoShadow", when the sun is behind the car. Sometimes
it is marked as undrivable, sometimes it is completely adapted and marked
as drivable, but the rest of the street is marked as undrivable as shown in
Fig. 21. A fourth problem occurs when testing on streets without curbs but
limited by mowed grassy areas. The laser scanner does not recognize the grass
as undrivable, because its level is about the same as the street niveau. This

Caroline: An Autonomously Driving Vehicle for Urban Environments 471

Fig. 19. Large, dark shadows (a, left) differ too much from the Street Color (b,
dark).

Fig. 20. Exposure is automatically adapted inside shadows (a). Areas outside the
shadow are overexposed and are marked as undrivable (b, dark).

causes the vehicle to move onto the grass, so that colors are adapted by the
area processing algorithm, and consequentially keeps the car on the green
terrain.

Alterations to the basic algorithm. Differing from the original algo-
rithm, our implementation does not classify regions of the image as drivable
and undrivable. The result of our distance function is mapped to an integer
number ranging from 0 to 127, instead of creating a binary information via
a threshold. In addition, a classification into the categories ’known drivabil-
ity’ and ’unknown drivability’ is applied to each pixel. These alterations are
required because the decision about the drivability of a certain region is not
made by the algorithm itself, but by a separate sensor fusion application.
For the sake of performance the KMEANS Nearest Neighbors algorithm was
chosen instead of the EM-algorithm, because the resulting grids are almost of
the same quality but the computation is considerably faster. Tests have shown
that better results can be achieved by using a color space that separates the
luminance and the chrominance in different channels, e.g. HSV, LAB, YUV.
The problem with HLS and HSV is that chrominance information is coded in
one hue channel and the color distance is radial. For example, the color at 358
degrees is very similar to that one at 2 degrees, but they are numerically very

472 F.W. Rauskolb et al.

Fig. 21. The vehicle’s own shadow can lead to problems (a), for example if only
the shadowed region is used to detect drivable regions (b, white).

far away from each other. Thus a color space is chosen where chrominance
information is coded in two channels, for example in YUV or LAB, where
similarity between two colors can be expressed as Euclidean distance.

Preprocessing. To cope with the problems of large shadows and lane mark-
ings, a preprocessing system was developed. Before the camera picture is
processed, it is handed over to the following preprocessors: White preproces-
sor (masking out lane markings and overexposed pixels), black preprocessor
(masking out large, dark shadows), yellow preprocessor (masking out lane
markings), egoShadow preprocessor (masking out the car’s shadow in the
picture). The output of each preprocessor is a bit mask (1: feature detected,
0: feature not detected), which is used afterwards in the pixel classifying
process, to mark the particular pixel as "unknown", which means that the
vision-based area processor cannot provide valid information about the area
represented by that pixel. In the following, the concept of each preprocessor
is described briefly:

White Preprocessor. In order to deal with overexposed image areas dur-
ing shadow traversing, pixels whose brightness value is larger than a given
threshold are detected. The preprocessor converts the given image into HSV
color space and compares the intensity value for each pixel with a given
threshold. If the value is above the threshold, the pixel of the output mask
is set to 1.

Black Preprocessor. As huge dark shadows differ too much from the street
color and would therefore be labeled as impassable terrain, pixels whose
brightness value is smaller than a given threshold are masked out. The pre-
processor analogously converts the given image into HSV color space and
compares the intensity value for each pixel with a given threshold. If the
value is below the threshold, the pixel of the output mask is set to 1.

Yellow Preprocessor. Small areas of the image which are close to yellow in
the RGB color space are detected so that yellow lane markings are not labeled

Caroline: An Autonomously Driving Vehicle for Urban Environments 473

as undrivable but rather as areas of unknown drivability. For each pixel of
the given image, the RGB ratios are checked to detect yellow lane markings.
If the green value is larger than the blue value and larger or a slightly smaller
than the red value, the pixel is not considered yellow. If the red value is
larger than the sum of the blue and the green values, the pixel is also not

considered yellow. Otherwise, the pixel is set to min(R,G)
B

− 1. Afterwards, a
duplicate of the computed bit mask is smoothed using the mean filter, dilated
and subtracted from the bit mask to eliminate huge areas. For different areas
of the image, different kernel sizes must be applied. In the end, only the
relatively small yellow areas remain. A threshold determines the resulting bit
mask of this preprocessor.

EgoShadow Preprocessor. When the sun is behind the car, the vehicle’s
own shadow appears in the picture and is either marked as undrivable, or it
is the only area marked as drivable. Therefore, a connected area directly in
front of the car is identified whose brightness value is low. At the beginning
of the whole computing process a set of base points p(x, y) is specified, which
mark the border between the engine hood and the ground in the picture.
The region of interesst in each given picture is set to ymax, the maximum
row of the base points, so that the engine hood is cut off. From these base
points the preprocessor starts a flood-fill in a copy of each given image, taking
advantage of the fact that the car’s shadow appears in similar colors. Then
the given picture is converted to HSV color space and the flood-filled pixel
are checked to determine if their intensity value is small enough. Finally, the
sum of the flood-filled pixels is compared to a threshold, which marks the
maximum pixel area that constitutes the car’s own shadow.

The dynamic search polygon. Using the output of the laser scanner to
determine the input polygon works quite well if the drivable terrain is lim-
ited by tall objects such as sand hills or shrubs. In urban terrain, however,
the output of the laser scanner must be sensitized to level distances smaller
than curbs (10 to 20 centimeters), which becomes problematic if the street
moves along a hill where the distance is much higher. Thus, the laser scanner

t t + 1

Fig. 22. This Fig. shows how the dynamic search polygon (a, green trapezoid) is
transposed to the right (b) because the calculated moment is positive in x-direction.

474 F.W. Rauskolb et al.

polygon does not remain a reliable source especially because both modules
solve different problems: The laser scanner focuses on range-based obstacle-
detection [Ulrich and Nourbakhsh, 2000], which is based on analysis of the
geometry of the surroundings, whereas the vision-based area processor follows
an appearance-based approach. For example, driving through the green grass
next to the street is physically possible, and therefore not prohibited by a
range-based detection approach, but it must be prevented by the appearance-
based system. This led to the concept of implementing a self-dynamic search
polygon which has a static shape, but is able to move along both the X-
and the Y-axis in a given boundary polygon Pboundary. The initial direction
is zero. Every movement is computed using the output of the last frame’s
pixel classification. For the computation a bumper polygon Pbumper is added,
which surrounds the search polygon. The algorithm proceeds in the following
steps:

Implementation and Performance. The algorithm has been imple-
mented with the Intel OpenCV library [OpenCV Website, 2007]. The frame-
work software is installed on an Intel Core 2 Duo Car PC with a Linux
operating system and communicates with an IDS uEye camera via USB. The
resolution of a frame is 640*480, but the algorithm applied downsampled im-
ages of size 160*120 to attain a manually adjusted average performance of 10
frames per second. The algorithm is confined to a region of interest of 160*75
cutting of the sky and the engine hood.

In Fig. 23 the difference between normal area processing and processing
with the black preprocessor is shown. Without the preprocessor, the large
shadow of a building to the left of the street is too dark to be similar to the
street color and is classified as undrivable. The black preprocessor detects the
shadowy pixels, which are classified as unknown (red).

The problem of overexposed areas in the picture is shown in Fig. 24, where
the street’s color outside the shadow is almost white and therefore classified as
undrivable in the normal process. The white preprocessor succeeds in marking
the critical area as unknown, so that the vehicle has no problem in leaving
the shadowy area.

Fig. 23. The results with black preprocessor. The picture in the center (b) shows
the classification results without the black processor. In picture on the far right (c)
the critical region is classified as unknown (red).

Caroline: An Autonomously Driving Vehicle for Urban Environments 475

Data: last frame’s grid of classified pixels, actual bumper polygon Pbumper

Result: updated position of the Polygons Pbumper

begin1

Initialize three variables pixelSum, weightedP ixelSumX,2

weightedP ixelSumY to zero
foreach pixel of the grid which is inside the bumper do3

count the amount pixelSum of visited pixels4

if drivability of the actual pixel is above a given threshold then5

Add the pixel’s x-Position relative to the midpoint of Pbumper to6

weightedP ixelSumX

Add the pixel’s y-Position relative to the midpoint of Pbumper to7

weightedP ixelSumY
end8

end9

Perform the division xmoment = weightedPixelSumX

pixelSum
and10

ymoment = weightedPixelSumY

pixelSum
and round the results to natural numbers

/* The value xmoment gives the amount and direction of the

movement of Pbumper in x-direction, the value ymoment gives

the amount and direction of the movement of Pbumper in

y-direction. */

Add the values xmoment and ymoment to the values of the actual midpoint11

of Pbumper to retrieve the new midpoint of Pbumper

Check the values of the new midpoint of Pbumper against the edges of12

Pboundary and adjust the values if necessary
Add the values xmoment and ymoment to the values of the actual midpoint13

of the search polygon to retrieve the new midpoint of the search polygon
as shown in Fig. 22
To prevent that the search polygon gets stuck in a certain corner, it is14

checked, if xmoment = 0 or if ymoment = 0
/* For example if xmoment = 0, it is evaluated, if the midpoint

of Pbumper is located right or left to the midpoint of

Pboundary; xmoment is set to 1, if Pbumper is located left,

otherwise it is set to −1. An analogous check can be

performed for the ymoment. */

end15

Algorithm 2. Dynamic search polygon algorithm.

Yellow lane markings differ from pavement in color space so that a human
driver can easily detect them even under adverse lighting conditions. This
advantage turns out to be a disadvantage for a standard classification system,
which also classifies the lane markings as undrivable, as shown in Fig. 25:
Lane markings are interpreted as tiny walls on the street. To counteract this
problem, we use a preprocessing step, which segments colors similar to yellow.
To deal with different light conditions, the color spectrum must be wider so
that a brownish or grayish yellow is also detected. This leads to some false

476 F.W. Rauskolb et al.

Fig. 24. The results with white preprocessor.The picture in the center (b) shows
the classification results without white processor. In picture on the far right (c) the
critical region is classified as unknown (red).

Fig. 25. The results with yellow preprocessor. The picture in the center (b) shows
the classification results without yellow preprocessor. In picture on the far right (c)
the lane marks are classified as unknown (red).

Fig. 26. The results with egoShadow preprocessor. The picture in the center (b)
shows the classification results without egoShadow processor. In picture on the far
right (c) the car’s own shadow is classified as unknown (red).

positives as shown in Fig. 25, but the disturbing lane markings are clearly
classified as unknown. The vehicle is now able to change lanes without further
problems.

A problem with the vehicle’s own shadow only occurs when the sun is
located behind the vehicle, but in these situations the classification can deliver
insufficient results. Figure 26 shows the shadowy area in front of the car as
unknown.

The benefit of a search polygon that is transposed by the output of the
last frame is tested by swerving about so that the car moves very close to
the edges of the street. Figure 27 shows the results when moving the car
close to the left edge. As the static polygon touches a small green area, a

Caroline: An Autonomously Driving Vehicle for Urban Environments 477

Fig. 27. The same frame first computed with a static search polygon (a, b), then
with the dynamic polygon (c, d). The dynamic movement calculation caused the
polygon to move to the right (c).

somewhat green mean value is gathered and so the resulting grid shows a
certain amount of drivability in the grassland, whereas the dynamic polygon
moves to the right of the picture to avoid touching the green pixels so that
the resulting grid does not show drivability on the grassland.

4.3 Artificial Intelligence

4.3.1 The DAMN-Architecture

To control Caroline’s movement, the artificial intelligence computes a speed
and a turning wheel angle for every discrete step. Turning the steering wheel
results in different circle-radii on which the car will move. Instead of the radii,
the approach is based on the inverse, a curvature.

A curvature of 0 represents driving straight ahead, while negative curva-
tures result in left and positive curvatures in right turns as shown in Fig. 28.

This curvature, as the most important factor to influence, is selected in an
arbiter as described in the DAMN-architecture [Rosenblatt, 1997]. This ar-
chitecture models each input as behavior, which gives a vote for each possible
curvature. More behaviors can be added easily to the system, which makes
it very modular and extendable. The following behaviors are considered:

• Follow waypoints: Simply move the vehicle from point to point as found
in the RNDF.

• Stay in lane: Vote for a curvature that keeps Caroline within the detected
lane markings.

• Avoid obstacles: Vote for curvatures that keep the vehicle as far away from
obstacles as possible and forbid curvatures leading directly into them.

• Stay on roadway: Avoid curb-like obstacles detected by grid-based fusion
with laser scanners and color camera.

• Stay in zone: Keep the vehicle in the zone, defined by perimeter points in
the RNDF.

All collected votes are weighted to produce an overall vote. The weights
again are not fixed, they depend on factors including distance to an intersec-
tion, presence of lanes and more. A trajectory point is calculated by following
the best voted curvature for one meter. A trajectory point holds information

478 F.W. Rauskolb et al.

obstacle

obstacle

startpoint

curvatures

0

-0.1

+0.1

vote

Fig. 28. Curvature field: Larger black circles represent preferred votes.

such as position, orientation and speed. Starting at this trajectory point,
all behaviors vote again for curvatures to find the next point until a list of
points is computed. This list has to be long enough to come to a complete
stop at current speed. The speed is controlled by another arbiter influenced
by different behaviors, which each provide a maximum speed. The arbiter
simply selects the lowest of these speeds. These behaviors are: RNDFMax,
sensor health, zone, reverse, safety zone, obstacle distance and following other
obstacles. Based on the trajectory points calculated iteratively we design a
drivable corridor for further processing by the next module in the chain, the
path planner.

4.3.2 Interrupts

Because the AI has to deal with more complex situations, e.g. stopping at
a stopline and yielding the right-of-way, than the DAMN-architecture is de-
signed for, we extended DAMN by an interrupt system. At each trajectory
point found each interrupt is called upon to decide if it wants to be activated
at its location. If so, the speed stored in the trajectory points is reduced to
bring the car to a smooth stop. If the point is reached, the interrupt is acti-
vated and the arbiters are stopped until the interrupt returns control to the
arbiters. Some of our interrupts are:

• Intersection: Activated at a stopline until it is our turn.
• Queue: Wait in a line at an intersection.

Caroline: An Autonomously Driving Vehicle for Urban Environments 479

• Overtake: Stop the car when the lane is blocked and wait for other lane
to clear to start passing maneuver.

• U-turn: Activated at a dead-end street - this interrupt actually performs
the U-turn and turns the car around.

• Road blocked: Activated if the entire road is blocked - this interrupt then
activates the U-turn interrupt when appropriate.

• Parking: Activated at a good alignment in front of the parkbox - this
interrupt returns control after the parking maneuver is finished.

• Pause: Active as long as the car is in pause mode.
• Mission complete: Final checkpoint is reached.

An example can be seen in Fig. 29, where the queueing interrupt has to
be activated at some point in the future and the speed must therefore be
reduced.

S
T

O
P

Queue

Interrupt

Intersection

Interrupt

v

Planned Trajectory Points

s

Fig. 29. Interrupt example.

4.3.3 Example

An example of how different behaviors interact is shown in Fig. 30. In the
recorded situation, Caroline just started overtaking another car, blocking
its lane. The plots represent the calculation of one trajectory: 20 trajectory
points are calculated from the front to the back. For each point votes for 40
curvatures are made, these are displayed from left to right.

The lane behavior (a) demands a sharp left for the first four curvatures,
then a right turn which finally transitions to straight driving. This would
bring Caroline quickly to the free lane to pass the obstacle vehicle. The ob-
stacle behavior (b) has two obstacles effecting the votes: On the left, a wall
forbids going farther to the left, on the right one can see the car that is be
passed. Finally the waypoint behavior (c) wants to go to the right all the time,
because that is the lane where Caroline should be and where the waypoints
are, but is outvoted by the other behaviors in (d).

480 F.W. Rauskolb et al.

a)

b)

c)

d)

Fig. 30. Votes of a) stay in lane, b) avoid obstacles, c) follow waypoints, d) weighted
sum.

4.4 Vehicle Control

Lateral and longitudinal control are the basics of autonomous vehicle guid-
ance. In the following, both concepts as installed in Caroline for the DARPA
Urban Challenge are discussed in detail.

4.4.1 Longitudinal Control

While the maximum and minimum speed of the vehicle is chosen by the ar-
tificial intelligence, the controller must calculate the braking and accelerator
set points in order to maintain a given speed.

For this purpose, the longitudinal controller is separated into an outer and
an inner loop controller. Based on the given speed set point, the outer loop
controller determines the required acceleration. Finally, the inner loop con-
troller calculates throttle and brake input to track the required acceleration.
The acceleration of the vehicle, which is needed for feedback of the lower
controller, is provided in high resolution by the GPS/INS system.

Gear shifting is handled via an automatic gear box. However, to switch
between forward, backward and parking state, an automatic lever arm is
attached at the gearshift. The lever arm position can be commanded with a
CAN (Controller Area Network) interface.

Caroline: An Autonomously Driving Vehicle for Urban Environments 481

Longitudinal Dynamics. The driving power must be greater than the sum
of all driving resistances, that is the sum of rolling, air and acceleration
resistance. Engine torque MM is a function of throttle αA, engine speed nM

and engine acceleration ṅM .

MM (αA, nM , ṅM) =
r

ηk ik
(fR m g + cw A

ρ

2
(
nM 2 π R0

ik
)2 + λm

ṅM 2 π R0

ik
)

(12)
The meaning of the parameter is given in table 1.

Table 1. Longitudinal model parameters.

Symbol Parameter

R0 Wheel Radius, Unloaded
r Wheel Radius, Loaded
ηk Degree of Efficiency, Gear Box
ik Gear Transmission Ratio
fR Rolling Friction Factor
m Mass
g Gravity
cw Air Resistance Factor
A Cross Sectional Area
ρ Air Density
λ Moulding Bodies Factor

The model is used for the inner loop controller to simulate different control
strategies for the longitudinal control. The plant model for the outer loop con-
troller is the transfer function between desired vehicle acceleration and actual
vehicle speed. The inner loop is approximated as a PT1 element. In addition,
an integral element is needed to integrate the speed from acceleration:

P (s) =
1

s (T s + 1)
(13)

Introducing measured values of the drive chain into the model, leads to a
value of T = 0.6s for system lag.

P-PD-Control Controller Cascade. As mentioned above, the longitudi-
nal controller is separated into an outer and inner control loop. The block
diagram in Fig. 31 depicts the control structure. K(s) stands for each trans-
fer function of the different controller parts. Different control parameters
are used for acceleration and deceleration. While a PD controller is ap-
plied for the inner loop, a P controller is introduced for the outer control
loop. Control outputs for acceleration and braking are combined via a pre-
defined logic to prevent the system from activating throttle and brake at the
same time.

482 F.W. Rauskolb et al.

K(s)
Lower Controller

Throttle

K(s)
Lower Controller

Brake

Caroline
Dynamics

K(s)
Upper Controller

Throttle

K(s)
Upper Controller

Brake

vdesired

adesired

adesired

a v

Fig. 31. Block diagram of the longitudinal controller.

In addition, an engine map can be used for direct feed forward of the throt-
tle. Fig. 32 shows a typical implementation of an engine map for longitudinal
control.

Performance of the Longitudinal Controller. Figure 33 illustrates the
performance of the longitudinal control strategy. Two different examples are
shown with two different speed profiles. While in the first example, the desired
speed is changed in long and large steps, in the second example the speed is
changed in shorter and smaller steps. The desired as well as the actual speed
of Caroline are illustrated.

4.4.2 Lateral Control

It is the main goal of the lateral controller to follow a given trajectory with
a minimum of track error. Secondly, vehicle driving maneuvers should match
certain comfort parameters for smooth driving experience.

Vehicle Dynamics. For simulation of the vehicle as well as design of the
controllers it is necessary to describe motion behavior with a mathematical
model. In the following the bicycle model is used. The bicycle model is based
on the following assumptions:

• The center of mass of the car is located at street level.
• Two wheels of each axle are combined as one wheel in the center of the

axles.
• The longitudinal acceleration is zero.
• The wheel load of all wheels is constant.
• Lateral forces at the wheel are proportional to skew angle.

A state space representation within following structure is preferred:

ẋ(t) = Ax(t) + B u(t) + Ez(t), x(0) = x0 (14)

Caroline: An Autonomously Driving Vehicle for Urban Environments 483

1000
2000

3000
4000

5000
6000

7000

0

20

40

60

80

100
0

50

100

150

200

250

Engine Speed in RPM

Engine Map

Throttle in percent

E
n
g
in

e
 T

o
rq

u
e
 i
n
 N

m

Fig. 32. Engine map.

Track error and track angle deviation have to be described mathematically to
take them into consideration. Track angle deviation is defined as the difference
between desired and actual orientation of the car. It is assumed that the
derivation of the track angle ζdesired can be calculated as the product of the
curvature κ of the track and the current speed v:

ζdesired = κ · v (15)

Yaw angle ψrel with respect to the desired track is the difference between
absolute yaw angle ψ and desired track angle ζdesired:

ψrel = ψ − ζdesired (16)

0 2 4 6 8
0

2

4

6

8

10

12
Example 1

Time t in sec

S
p

e
e

d
 v

 i
n

 m
/s

Actual Speed

Desired speed

0 1 2 3 4 5
0

2

4

6

8

10

12
Example 2

Time t in sec

S
p

e
e

d
 v

 i
n

 m
/s

Actual Speed

Desired speed

Fig. 33. Performance of the longitudinal controller.

484 F.W. Rauskolb et al.

SP

xHF

yVF

VAl

HAl

l

)(mvFzent

v

xVF

yHF

V

Fig. 34. Bicycle model.

As a result, yaw rate ψ̇rel with respect to the desired track can be determined:

ψ̇rel = ψ̇ − κ v (17)

Moreover, the derivation of the track error ḋ can be formulated based on
speed v, attitude angle β and relative yaw angle ψrel:

ḋ = v (β + ψrel) (18)

The state space representation of the bicycle model can be combined with
the mathematical representation of the track error, track angle deviation and
an additional time delay TL between commanded and actual steering wheel
angle. The state vector consists of yaw rate ψ̇, attitude angle β, relative yaw
angle ψrel, track error d and actual steering angle δ. The result is the following
state space model with the commanded steering angel δdesired as the input
variable and curvature κ as outer noise:

⎛

⎜

⎜

⎜

⎜

⎝

ψ̈

β̇

ψ̇rel

ḋ

δ̇

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

a11 a12 0 0 a15

a21 a22 0 0 a25

1 0 0 0 0
0 v v 0 0
0 0 0 0 − 1

TL

⎞

⎟

⎟

⎟

⎟

⎠

·

⎛

⎜

⎜

⎜

⎜

⎝

ψ̇
β

ψrel

d
δ

⎞

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎝

0
0
0
0
iL

TL

⎞

⎟

⎟

⎟

⎟

⎠

· δdesired +

⎛

⎜

⎜

⎜

⎜

⎝

0
0
−v
0
0

⎞

⎟

⎟

⎟

⎟

⎠

· κ

(19)
with

a11 = −
cαV l2V + cαH l2H

θ v
, a12 = −

cαV lV + cαH lH
θ

, a15 =
cαV lV

θ
(20)

a21 = −1 −
cαV lV − cαH lH

m v2
, a22 = −

cαV + cαH

m v
, a25 =

cαV

m v
(21)

The parameters are described in table 2.

Caroline: An Autonomously Driving Vehicle for Urban Environments 485

The output of the system is the track error d.

y(t) =
(

0 0 0 1 0
)T

x(t) (22)

Based on the state space model, the transfer function can easily be deter-
mined. The control transfer function is

Fc(s) =
iL

TL s + 1
·
a25s

2 + (a15 a21 + a15 − a25 a11) s + (a25 a12 − a25 a12)

s2 − (a11 + a22)s + (a11 a22 − a12 a21)
·
1

s
·
v

s
(23)

and the noise transfer function:

Fnoise = −
v

s
·
v

s
(24)

Table 2. Parameters of the bicycle model.

Symbol Parameter

cαV Skew Stiffness, Front Wheel
cαH Skew Stiffness, Back Wheel
lV Wheel Base Front to Center of Mass
lH Wheel Base Back to Center of Mass
θ Moment of Inertia
m Mass

Parallel Structure Control. As modeled, the vehicle has three degrees of
freedom, which are the x and y position as well as the orientation ψ of the
car. Only the steering angle δ is available for controlling the system. As a
result, the three degrees of freedom are handled simultaneously. Track error
and track angle deviation are used as feedback signals. The working point is
chosen at the speed of 30 km/h.

Figure 35 shows the structure of the control strategy used. Again, K(s)
stands for each transfer function of the controller. It consists of two parallel
control loops for track error and track angle deviation as well as a pilot
control taking the curvature of the desired trajectory into consideration. The
map-based pilot control algorithm calculates the steering angle that would be
needed to follow the desired track based on parameters of the bicycle model.

Performance of the Lateral Controller. Lateral control strategy has to
handle different kinds of trajectories. On the one hand, the vehicle has to
follow trajectories with a curvature of approximately κ ≈ 0 at higher speeds.
On the other hand, the track error in twisting areas is supposed to be as
small as possible. Figure 36 shows an example of a trajectory that consists
of a long straight part and two sharp curves. On the straight section, the
vehicle is accelerated up to a speed of almost v = 50 km/h. The curves are
driven at a speed of approximately 20 km/h. The speed profile is shown in

486 F.W. Rauskolb et al.

K(s)

Pilot Control

K(s)

Track Error

Track Angle

�

�

��

��

��

d

�

Desired
Trajectory

Position and
Orientation

Fig. 35. Lateral control strategy.

Fig. 37. The performance of the control strategy in terms of track error can
be seen in the same figure.

The control strategy shown worked well during all tests and missions dur-
ing the DARPA Urban Challenge. It has always been stable with quite a low
track error.

4.5 Safety

The safety systems of Caroline have to ensure the highest possible safety
for the car and the environment in both manned or unmanned operation. It
has to monitor the integrity of all viable hardware and software components.
In case of an error, it has to bring the car to a safe stop. Furthermore, it

−300 −280 −260 −240 −220 −200 −180 −160 −140 −120 −100
100

110

120

130

140

150

160

170

180

190

200
Trajectory

x−Position in m

y
−

P
o
s
it
io

n
 i
n
 m

Final Position

Starting Position

Fig. 36. Trajectory.

Caroline: An Autonomously Driving Vehicle for Urban Environments 487

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50
Speed Profile of the Track

Time in sec

S
p

e
e

d
 i
n

 k
m

/h

0 5 10 15 20 25 30
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Track Error

Time in sec
T

ra
c
k
 E

rr
o

r
in

 m

Fig. 37. Speed profile and track error of the trajectory.

must provide an interface for pausing or disabling the car using a remote E-
stop controller. We extended these basic features by including the possibility
to reset and restart seperate modules independently using hardware and/or
software means in order to gain the option of automated failure removal.
Figure 38 depicts this watchdog concept.

Caroline is equipped with two separate brake systems. The main hydraulic
system and an additional electrical parking brake. The main hydraulic brake
is controlled by pressure, usually generated with a foot pedal by the driver.
In autonomous mode, this pressure is generated by a small hydraulic brake
booster. The parking brake is controlled by a push button in the front console.

CANlog III

CAN powertrain

CAN actorics

CAN controller

go

disable

vehicle power

vehicle starter

monitoring

communication

monitoring actorics

state

controlling

emergency brake

generating vehicle

state message

controlling horn,

flashing beacon
emergency/parking brake

horn / warning beacon

Vehicle Controller

Car PC

Watchdog

monitoring heartbeats

sending autonomous

mode demands

communication

interface

connect

steering

braking throttle gear

vehicle

information

controlling vehicle

power, starter

Fig. 38. Watchdog architecture.

488 F.W. Rauskolb et al.

This brake is a useful additional feature. If the button is pressed while the
car is rolling, the main brake system is activated in addition to the parking
brake until the car comes to a complete stop. During autonomous mode,
the watchdog gateway, the emergency buttons on the top of the car and the
receiver for the remote E-stop controller form a safety circuit, which holds a
safety relay open. This relay is connected to the push button for the parking
brake. If one of the systems fails, or is activated, the safety circuit is opened,
the contact of the relay is closed and the push button of the parking brake is
activated. During emergency braking, the lateral controller of the car is still
able to hold the car on the given course.

Although the watchdog’s main purpose is to assure safety it also increases
the system’s overall reliability. Caroline is a complex system with custom or
pre-production hardware and software modules. These components were de-
veloped in a very short time and therefore are not as reliable as off-the-shelf
commercial products. For this reason we used devices primarily implemented
for all safety-relevant subsystems in order to also provide the means to mon-
itor and reset non-safety relevant subsystems.

Each host runs a local watchdog slave daemon, which monitors all local
applications as shown in Fig. 39. A process failing to send periodic heartbeats
within a given interval indicates a malfunction, such as memory leakage or
deadlocks. Therefore the process and all dependent processes are terminated
by the local watchdog slave, to be restarted with respect to the order required
by process dependencies.

The slave watchdog itself is monitored by a remote central master watch-
dog. This approach allows the detection of malfunctions that cannot be re-
solved by the local slave watchdog, e.g. if a computer freezes. If a computer
should freeze, an emergency stop is initiated and the failed system is power-
cycled to restart in a stable state. The master watchdog is monitored by the

gateway

heartbeat/reset/suspend

slave daemon 2

process 1

pc n...

process 2

process n

s
ta

rt

h
e
a
rt

b
e
a
t

k
il

l

controller

CAN

actorics CAN

TCP/IP

relaisbox

for power shutdown

slave daemon 1

process 1

pc 1

process 2

process n

s
ta

rt

h
e
a
rt

b
e
a
t

k
il

l

slave daemon n

watchdog

pc

process 2

process n

s
ta

rt

h
e
a
rt

b
e
a
t

k
il

l

wd master

Fig. 39. Software watchdog architecture.

Caroline: An Autonomously Driving Vehicle for Urban Environments 489

CAN gateway, which initiates an emergency stop on failure of the master
watchdog.

5 System Development Process

For developing Caroline’s software and ensuring its quality, we implemented a
multi-level testing process using elements of extreme programming
[Beck, 2005] partly realized in an integrated tool chain shown in Fig. 40.
The workflow for checking and releasing software formally consists of five
consecutive steps. First the source is compiled to check for syntactical
errors. While running the test code, the memory leak checker valgrind
[Nethercote and Seward, 2003] checks for existing and potential memory
leaks in the source code. After the execution of the test code, source code
coverage is computed by simply counting the executed statements. The intent
is to implement test cases that completely cover the existing source code or
to find important parts of the source code that are still lacking test cases.
The last step is for optimization purposes only and executes the code in order
to find time-consuming parts inside an algorithm.

The tool chain is executed manually by the developer or by using an in-
tegrated development environment such as Eclipse. The tool chain itself can
be customized by the developer by selecting only necessary stages for the
current run, i.e. skipping test suites for earlier development versions of an
algorithm. Nevertheless, the complete tool chain is executed every time a
new version of the source code is checked in the revision system Subversion
[Collins-Sussmann et al., 2004]. Therefore, an independent bugbuster server
periodically checks for new revisions on the server. If a new version is found,
it is checked out into a clean and safe environment so that the complete
tool chain can be run. The results are collected and a report is automat-
ically generated. The report is easily accessible through the project’s web

Fig. 40. Workflow for testing and releasing software.

490 F.W. Rauskolb et al.

portal [Edgewall Software, 2007] for every developer. For measuring the per-
formance or consulting the results of a previous revision, the history of older
revisions is kept and accessible via same the web portal.

The main development process described above mainly covers only unit
tests[Liggesmeyer, 2002] for some functions or parts of the complete software
system. For the development of Caroline’s artificial intelligence, interactive
feed back tests using riskless simulations are necessary. Furthermore, the
interactive simulations describe different situations for testing the artificial
intelligence. After completing the interactive tests, they can be formalized
in acceptance tests for automatic execution on another independent server.
These test suites are automatically executed after every change to the revision
system comparable to the bugbuster server.

The next section describes the simulator development for the CarOLO
project. Afterwards, the adoption of the simulator in automatic accep-
tance tests is explained. This work continues prior work presented in
[Basarke et al., 2007a] and [Basarke et al., 2007b].

5.1 Simulator

The simulation of various and partly complex traffic situations is the key for
developing a high quality artificial intelligence that is able to handle many
different situations with different types of preconditions. The simulator pro-
vides appropriate feedback to the other parts of the system, by interpreting
the steering commands and changing the Ego State and the surroundings.

The simulator can be used for interactively testing newly developed ar-
tificial intelligence functions without the need for real vehicle. A developer
can simply, safely and quickly test the functions. Therefore, our approach is
to provide a simulator that can reliably simulate missing parts of the whole
software system. Furthermore, the simulator is also part of an automatic test
infrastructure described in the next section.

Figure 41 shows the main classes of the core simulator. The main idea
behind this concept is the use of sets of coordinates in a real world model as

Fig. 41. Main classes of the simulator.

Caroline: An Autonomously Driving Vehicle for Urban Environments 491

context and input. These coordinates are stored in the model and used by the
simulator. Every coordinate in the model is represented by a simulator object
position describing the absolute position and orientation in the world. Every
position is linked to a simulator object that represents one single object.
These objects can have a variety of behaviors, shapes and other information
necessary for the simulation. The model is linked with a simulator control that
supervises the complete simulation. The simulator application itself controls
the instantiation of every simulator component by using object factories.

Figure 42 shows the factories in detail. The simulator view encapsulates
a read-only view of an extract of the world model. Every simulator view is
linked with a simulator components group. A component represents missing
parts of the whole system like an actorics module for steering and braking or
a sensor data fusion module for combining measured values and distributing
the fused results. Thus, every component in the components group can access
the currently visible data of the core data model by accessing the simulator
view. As mentioned above, every simulator object position is linked with a
simulator object, each of them equipped with its own configuration. Thus,
every component can retrieve the relevant data of the owned simulator object.

The main task of the simulator is to modify the world model over time.
For simulating the world it is necessary to proceed a step in the simulation.
A simulation step is a function call to the world model with the elapsed time
step δti > 0 as a parameter that modifies the world model either sequentially
or in parallel.

A simple variant is to modify every simulator object sequentially. In this
variant, the list of simulator objects is addressed through an iterator and then
modified using original object data. Although this is an efficient approach,
it is not appropriate when the objects are connected and rely on behaviors
from other objects. Another possibility is to use the algorithms as if a copy of
the set of simulator object positions were created. While reading the original

Fig. 42. Object factories creating the simulator’s surroundings.

492 F.W. Rauskolb et al.

Fig. 43. World’s model and motion behavior interface.

data, the modification uses the copy and thus allows a transaction such as a
stepwise update of the system, where related objects update their behavior
together.

For modifying an object in the world model, every non-static object in the
world model uses an object that implements the interface MotionBehavior
as shown in Fig. 43. A motion behavior routine executes a simulation step
for an individual object. A simulator component implementing a concrete
motion behavior registers itself with the simulator object. For every simula-
tion step the simulator object must call the motion behavior and therefore
enables the behavior implementation to modify its own position and orienta-
tion according to a simulator component. The decoupling of objects and their
motion behavior allows us to change the motion behavior during a running
simulation, i.e. because of weather influences. Furthermore, it simplifies the
implementation of new motion behaviors at development time. For testing
Caroline, we have developed additional motion behaviors like MotionBehav-
iorByKeyboard for controlling a virtual car in the interactive mode by using
keys or a MotionBehaviorByRNDF that controls a car in its surroundings by
using a predefined route to follow.

The most interesting motion behavior however, is the MotionBehaviorBy-
Trajectory because it communicates directly with the artificial intelligence.
For the best imitation of the behavior of the real car, the simulator uses the
same code as the vehicle control module based on trajectories expressed as
a string of pearls that form consecutive gates. Furthermore, the motion of
the simulated car is computed with 3rd order B-splines such as the vehicle
controller module. Using a B-spline yields smoother motion in the simulation
and a driving behavior sufficiently close to reality - if it is taken into account
that for intelligent driving functions it is not necessary to handle the physical
behavior in every detail, but in an abstraction useful for an overall correct
behavior.

Using motion behaviors, it is possible to compose different motion behav-
iors to create a new composed motion behavior. For example, it is possi-
ble to build a truck with trailer from two related, but only loosely coupled

Caroline: An Autonomously Driving Vehicle for Urban Environments 493

objects. A composition of the motion behaviors yields a new motion behav-
ior that modifies the position and orientation of the related simulator objects
according to inner rules as well as general physical rules.

Getting such a simulator up and running requires quite a number of ar-
chitectural constraints for the software design. One important issue is that
no component of the system being tested tries to call any system functions
directly, like threading or communication, but only through an adapter. De-
pending on whether it is a test or an actual running mode, the adapter
decides if the function call is forwarded to the real system or substituted by
a result generated by the simulator. Because of the architectural style, it is
absolutely necessary that no component retrieves the current time by call-
ing a system function directly. Time is fully controlled by the simulator and
therefore knows which time is relevant for a specific software component if
different times are used. Otherwise, time-based algorithms will become con-
fused if different time sources are mixed up.

5.2 Quality Assurance

As mentioned at the beginning of this section, the simulator is not only used
for interactive development of the artificial intelligence. It is also part of a tool
chain that is automatically executed on an independent server for assuring
the quality of the complete software system consisting of several modules.
In the CarOLO project, we analyzed the DARPA Urban Challenge docu-
ments to understand the requirements. These documents contained partly
functional and non-functional definitions for the necessary vehicle capabil-
ities. In every iteration a set of tasks consisting of new requirements and
bugs from previous iterations is chosen by the development team, prioritized
and concretely defined using the Scrum process for agile software engineer-
ing [Beedle and Schwaber, 2002]. These requirements are the basis for both
a virtual test drive and a real test of Caroline.

After designing a virtual test drive the availability of necessary validators
is checked. A validator is part of the acceptance tool chain and responsible for
checking the compliance of the artificial intelligence’s output with the formal
restrictions and requirements. Validators implementing intelligent software
functions are used to automatically determine differences in the expected
values in the form of a constraint that cannot be violated by the test. A
validator implements a specific interface that is called up automatically after
a simulator step and right before the control flow returns to the rest of the
system. A validator checks, for example, distances to other simulator objects,
validates whether a car has left its lane or exceeded predefined speed limits.
After an unattended virtual test drive, a boolean method is called upon to
summarize the results of all test cases. The results are collected and formatted
in an email and web page for the project’s web portal.

The set of validators covers all basic requirements and restrictions and can
be used for automatically checking the functinality of new software revisions.

494 F.W. Rauskolb et al.

Fig. 44. Screenshot of the GUI tool for constructing RNDFs.

The main benefit is that these high level tests are black-box tests and do not
rely on the internal structure of the code. Thus, a subgroup of the CarOLO
team was able to develop these high level acceptance tests without a deep un-
derstanding of the internal structures of the artificial intelligence. Using this
approach, more complex traffic situations could be modeled and repeatedly
tested without great effort.

To allow for the quick and convenient creation of test scenarios, various
concepts and tools have been developed. The following describes how virtual
test drives are defined as well as how certain surroundings such as data fusion
objects or drivability data is generated and fed into the simulator. To make
this clear we briefly illustrate the proceedings on a basis of an example, which
deals with the simple passing maneuver as already described in section 4.3.3.
Assume we would like to determine wether the artificial intelligence is able to
recognize static obstacles in our travel lane and reacts properly by adhering
the required minimum distances.

First, an RNDF must be created that contains information about existing
lanes, intersections, parking spots and their connections. As an RNDF pro-
vides the basis for every test run, many of those route network definitions had
to be created. Therefore we developed a GUI tool to simplify the creation of
RNDFs as shown in Fig. 44.

Several features including dragging waypoints, connecting lanes and adding
stop signs or checkpoints speed up the construction process. Completed
RNDFs could be exported to a text file and used as input for the artificial
intelligence as well as for the simulator.

Caroline: An Autonomously Driving Vehicle for Urban Environments 495

Fig. 45. Screenshot with fusion objects.

The purposes of RNDFs within the simulator vary in different ways. One
purpose is to check the behavior of the artificial intelligence concerning the
RNDF provided and the actual lane. Therefore a second RNDF can be passed
to the simulator. The additional and independent RNDF is used to provide
lane data, which is normally detected by the computer vision system. This is
especially important if there are major differences between the linear distance
and the actual route to the next waypoint.

Another use of RNDFs is to define the behavior of dynamic obstacles
during the test run, as mentioned earlier. Thus we are able to check rel-
evant software modules for their interaction with dynamic obstacles. This
approach is similar to the one used for providing detected lanes. Dynamic
obstacles are interacting on a basis of their individual RNDFs by using the
MotionBehaviorByRNDF. This concept can be used for simulating scenarios
at intersections and even more complex traffic scenarios.

To extend the example of passing a static obstacle we need to create suit-
able data, which could be translated to sensor fusion objects. Two princi-
pal approaches are available to achieve this goal. Generating scenarios with
static obstacles can be accomplished by using our visualisation application,
which provides the ability to define polygons or by using a drawing tool.
Shapes of fusion objects could be exported to a comma-separated file. The
simulator parses the textual representation of polygons and translates them
to fusion objects to be processed by the artificial intelligence. The use of a
drawing tool implies the use of predefined colors. The positions of static ob-
stacles are computed by scanning the created image for special markers with

496 F.W. Rauskolb et al.

Fig. 46. Sreenshot with additional drivability data.

reference to a known coordinate. Fig. 45 depicts a screenshot of our visuali-
sation application where the corresponding fusion objects are displayed.

For a more realistic simulation, the data fusion objects generated by the
simulator could be created with different quality. This is used to simulate
sensor noise and GPS drifts and makes fusion objects suddenly disappear or
moves them by a tiny offset away from their original location. The sensor
visibility range could be specified to affect the range of fusion objects that
will be transmitted to the artificial intelligence.

Adding moderate drivability data completes this test run. This could be
accomplished by passing an image file to the simulator, which specifies the
required information through different colors. Fig. 46 shows the result. The
visualisation of drivability grid displays drivable terrain in green, undrivable
terrain in red and unknown terrain with blue cells.

6 The Race and Discussion

6.1 National Qualification Event

The National Qualification Event took place from October 26 to October
31 on the former George Airforce Base in Victorville, California as depicted
in Fig. 2. The entire area was divided into three major parts named ”Area
A”, ”Area B” and ”Area C” as shown in Fig. 47. First of all, Caroline had
to demonstrate the proper function of her safety system to participate in
the National Qualification Event. As expected Caroline stopped within the
necessary range using the E-stop remote controller as well as the emergency
stop buttons mounted on her roof.

Caroline: An Autonomously Driving Vehicle for Urban Environments 497

Fig. 47. Layout of the former George Airforce Base for the National Qualification
Event. The blue dot indicates the pit area for our team.

6.1.1 Area A

For our team, the National Qualification Event started in ”Area A”. The main
task for Caroline in that part was to merge into and through moving traffic.
Therefore, several other vehicles controlled by human drivers drove within
predefined speed limits to ensure the 10 seconds time slots as demanded by
the DARPA’s requirements. Fig. 48 shows the layout of the track. Caroline
was placed at checkpoint 2. She had to drive downward to the T-junction,
wait for an appropriate time slot and then turn left through the moving
traffic. Afterwards, she had to pass checkpoint 1 by following other vehicles
and drive to the upper junction. After waiting for an appropriate time slot,
she had to turn into the street to pass checkpoint 2 again. The goal was to
drive as many rounds as possible in this area.

Compared to other competitors, Caroline had to pass this task several
times. The first run in this part let Caroline drive into the opposite lane.
Analyzing this obviously strange behavior afterwards using our simulator as
depicted in Fig. 49, we figured out that the barriers shown by white lines
around the course narrowed the proper lane. Therefore, Caroline, shown as
a red rectangle driving downwards to the lower T-junction, interpreted them
as stationary obstacles in her way which she tried to overtake which can be
seen in the computed trajectory shown by yellow and black pearls that leads
into the opposite lane.

498 F.W. Rauskolb et al.

Fig. 48. Layout of ”Area A”.

After modifying several parameters, we had our second try in ”Area A”.
She drove five rounds, merged into moving traffic correctly, waited at stop
lines and followed other vehicles very well. Unfortunately, some problems
occurred on the above right corner, when Caroline decided to turn right
instead of following the road to the junction. We found out, that Caroline
got in trouble with the street surface in that corner. There was a mixture
of concrete and tar each with different colors. Thus, Caroline educated that
color difference and tried to drive towards areas with a similar surface.

After modifying that behavior, we got another try in that course. Caroline
started a perfect first run but waited too long for the second one. Therefore,

Fig. 49. Analysis of Caroline’s behavior in “Area A”.

Caroline: An Autonomously Driving Vehicle for Urban Environments 499

the judges paused our vehicle and demanded a more progressive behavior
of Caroline. Tuning again some parameters, we tried the course a fourth
time short time later. This time, Caroline drove very swiftly but she did not
give way to oncoming traffic. So, we changed the parameters again to get a
safer behavior again and convinced the judges in our last try in that area of
Caroline’s abilities to merge correctly into moving traffic after demonstrating
approximately eigth perfect rounds.

6.1.2 Area B

After encountering difficulties in the first task, we were unsure how Caroline
would perform in ”Area B” since several teams already failed to complete this
part. The entire course is shown in Fig. 50. The main task was to overtake
stationary obstacles, handle free navigation zones without any lane markings
and to park safely inside those zones between other vehicles. The course itself
could not be seen completely, so Caroline had to drive for herself without any
observation by our team. We only could hear her progress by the team radio
and by her siren.

Caroline started within a concrete start chute laid inside a free navigation
zone. Many other teams already failed to leave this zone into the traffic circle
correctly. She entered smoothly the traffic circle, left the circle and turned into
the part on the right hand side of Fig. 50. In the center of the lower circle

Fig. 50. Layout of ”Area B”.

500 F.W. Rauskolb et al.

she had to park between other vehicles. The entry to that zone was very
rough and several other teams already damaged the tires of their vehicle.
We analyzed the video right after the task and remarked heavy vibration of
the camera’s picture but she entered the zone smoothly. After finishing the
parking she left the zone to proceed the course.

Furthermore, Caroline had to deal with a gate located right at the exit of
the upper circle. Due to our sensor layout she had to attempt several times to
find the right way for leaving that circle. Returning to the start chutes again,
she honked twice to indicate the completion of her mission after passing the
last checkpoint. With this successful run, Caroline was one of only three
vehicles to accomplish this course completely and in time.

6.1.3 Area C

On the same day, Caroline was faced with ”Area C”. This area is shown in
Fig. 51. The main task was to handle intersections correctly and deal with
blocked roads.

Caroline started near checkpoint 30 in the upper left corner on the outer
lane. She handled both intersections on the left hand side and the right
hand side several times correctly with every combination of other vehicles
she was faced. Right in front of checkpoint 30 in the center part of this
course, Caroline encountered a road blockage as shown in Fig. 52. We were
unsure wether Caroline would detect the barrier since it had no contact to
the ground and our sensors could look right through that barrier.

Fig. 51. Layout of ”Area C”.

Caroline: An Autonomously Driving Vehicle for Urban Environments 501

Fig. 52. Blocked round in ”Area C” by a barrier.

But Caroline detected that barrier properly and initiated the U-turn to
choose another route the checkpoint. Afterwards, she passed all further traffic
and intersection situations correctly and finished ”Area C” finally. With all
results achieved in the three areas, Caroline qualified early as a newcomer for
the final event besides the well-established team with their experience of the
Grand Challenges.

6.2 Mandatory Practice for DARPA Urban Challenge Final

Event

The day before the DARPA Urban Challenge Final Event was scheduled,
everyone of the eleven finalists had to participate in a practice session. By
using this session, DARPA would ensure that every vehicle was able to leave
the start chute and turn into the traffic circle. Assuming that this would be
an easy task, we put Caroline into autonomous mode and waited for her to
begin her run. But she did not leave her start chute and our team failed that
practice session. We figured out a problem by parsing the RNDF provided by
the DARPA. This issue did not let Caroline understand the road network for
the final. After fixing this problem, we got another try. But Caroline still did
not leave her start chute. Thus, DARPA placed us in the last of the eleven
start chutes and cancelled the practice for our team.

Later analyzing the data we figured out the jitter in the GPS signal while
significantly waiting for the ”RUN” mode that yielded leaving the calculated

502 F.W. Rauskolb et al.

Fig. 53. Layout for the DARPA Urban Challenge Final Event.

trajectory. After fixing this issue we finally prepared Caroline for the DARPA
Urban Callenge Final Event on the following day.

6.3 DARPA Urban Challenge Final Event

Figure 53 shows the enlarged ”Area B” track for the DARPA Urban Challenge
Final Event, including the former ”Area A” as a parking lot. The start chutes
were the same as for the run in ”Area B”. Additionally, in the lower-right
corner of the map, there was a sandy off-road track located yielding a two-
lane road return the inner part of the DARPA Urban Challenge Final Event
area.

On November 3, 2007 at 6:53 am PST we loaded the first of three mission
files into Caroline and set her into ”PAUSE” mode. She calculated the route
for the first checkpoint and started her run at 7:27 am PST. Fig. 54 shows
the first part of her way during the first mission.

The asterisk in Fig. 54 indicates the location where two members of our
team had to accompany the DARPA judges. Caroline had passed approxi-
mately 2.5 kilometers until she was paused by the DARPA control vehicle
right behind her. Fig. 55 shows the reason for ”PAUSE” mode.

Caroline got stuck after she turned into the berms. Fig. 55 (a) and (b)
shows Caroline approaching a traffic jam right in front of her. Obviously, she
tried to pass the stopped vehicle by interpreting it as a stationary obstacle
using the clearance next the last car. The result of this attempt is shown
in Fig. 55 (c): Caroline got stuck and could not get free without human
intervention.

Caroline: An Autonomously Driving Vehicle for Urban Environments 503

Fig. 54. Passed way before the first problem.

After she got freed and set in ”RUN” mode again right at the beginning
of the two-lane road, she continued her route and passed several checkpoints.
The next incident was after 11.4 kilometers shown as the asterisk in Fig. 57.

At that location Caroline did not yield right of way to Talos, the au-
tonomous vehicle from team MIT. Therefore, the DARPA paused both
vehicles and let team members from MIT come to that location. After re-
placing Talos, both vehicles were sequentially set to ”RUN” mode and passed
safely each other. Unfortunately, the reason for not yielding right of way to
Talos could not be figured out analyzing our log files. Since the situation
was a left turn through oncoming traffic, it could be a problem detecting
and tracking Talos due to problems either with our front sensors or with the
interpretation in the artificial intelligence.

As shown in Fig. 58, Caroline continued her route. Additionally, she parked
in the parking lot shown in the upper left picture of Fig. 58. After the parking

Fig. 55. Caroline got stuck after 2.5 kilometers.

504 F.W. Rauskolb et al.

Fig. 56. Caroline went on after she got stuck.

maneuver, she returned the second time to the traffic circle and continued
her mission 1.

At approximately 9:55 am PST, again two team members from team Car-
OLO were driven to Caroline, who met Talos from team MIT for the second
time in a free navigation zone. This incident is shown as an asterisk in Fig. 59.

Our team members were faced with a twisted carrier rod of the Ibeo laser
scanners due to a collision with Talos from team MIT as shown in Fig. 60.
Until today it is still unresolved which car was in charge of the accident.
Caroline interpreted the situation as described in the technical evaluation
criteria [DARPA, 2006] by the section “Obstacle field”. Therefore, Caroline
tried to pass the oncoming Talos by pulling to the right side. Unfortunately,
further interpretation is impossible due to missing detailed log files of that
situation. Finally, DARPA retired Caroline as the fourth and last vehicle
from the DARPA Urban Challenge Final Event.

Altogether, Caroline drove 16.4 kilometers in total and was retired from
the race at 10:05 am PST. At 8:03 am PST, the watchdog module reset the
SICK laser scanners mounted on the roof due to communication problems. At

Caroline: An Autonomously Driving Vehicle for Urban Environments 505

Fig. 57. Next incident including Caroline and Talos from team MIT.

Fig. 58. Caroline went on after not yielding right of way to Talos.

approximately 9:00 am PST, the watchdog missed heartbeats from the IMU,
and therefore triggered a reset. Right after the collision with Talos from team
MIT, the watchdog observed communication problems with the laser scanners
mounted in the front of Caroline. After a reset, the communication was re-
established. During the race, computer ”Daq1” as shown in Fig. 4 froze two
times and had to be reset.

506 F.W. Rauskolb et al.

Fig. 59. Passed way before the first problem.

Fig. 60. Caroline was retired after the collision with MIT.

7 Conclusion

Team CarOLO is an interdisciplinary team made up of members from the fac-
ulties of computer science and mechanical and electrical engineering which is
significantly supported by industrial sponsors. Our vehicle Caroline is a stan-
dard 2006 Volkswagen Passat station wagon built to European specifications
that is able to detect and track stationary and dynamic obstacles at a distance
of up to 200 meters. The system’s architecture comprises eight main mod-
ules: Sensor Data Acquisition, Sensor Data Fusion, Image Processing, Digital
Map, Artificial Intelligence, Vehicle Path Planning and Low Level Control,
Supervisory Watchdog and Online-Diagnosis, Telemetry and Data Storage

Caroline: An Autonomously Driving Vehicle for Urban Environments 507

for Offline Analysis. The signal flow through these modules is generally lin-
ear in order to decouple the development process. Our design approach uses
multi-sensor fusion of lidar, radar and laser scanners, extending the classical
point shape based approach to handle extensive dynamic targets expected
in urban environments. Image processing detects lane markings along with
drivable areas. Artificial intelligence is modeled according to DAMN archi-
tecture, redesigned and enhanced to meet requirements of special behavior in
urban environments. Our approach is able to handle complex situations and
ensure Caroline’s proper behavior, e.g. obeying traffic regulations at intersec-
tions or performing U-turns when roads are blocked. Decisions of the artificial
intelligence are sent to the path planner, which calculates optimal vehicle tra-
jectories with respect to its dynamics in real time. Safety and robustness is
ensured by supervisory watchdog monitoring of all vehicle’s hardware and
software modules. Failures or malfunctions immediately result in a safe and
complete stop by Caroline. Since we are a large heterogeneous team with a
very tight project schedule, we recognized very early the need for efficient
quality assurance during the development process. Thus, we implemented an
automatic multi-level test process. Each new feature or modification runs
through a series of unit tests or comprehensive simulations before being de-
ployed on the vehicle.

As a competitor in the DARPA Urban Challenge Final Event, Caroline
is able to autonomously perform missions in urban environments. She drove
approximately 17 kilometers in about three hours in the final.

Acknowledgments

The authors thank their colleagues, students and professors from five insti-
tutes of the Technische Universität Braunschweig, who have developed Caro-
line. As a large amount of effort and resources were necessary to attempt this
project, it would not have been successful if not for the many people from
the university and local industry that had sponsored material, manpower and
financial assistance. Particular thanks go to Volkswagen AG, IAV GmbH and
the Ministry of Science and Culture of Lower Saxony. The authors’ team also
greatly thanks Dr. Bartels, Dr. Hoffmann, Professor Hesselbach, Mr. Horch,
Mr. Lange, Professor Leohold, Dr. Lienkamp, Mr. Kuser, Professor Seiffert,
Mr. Spichalsky, Professor Varchmin, Professor Wand and Mr. Wehner for
their help on various occasions.

References

Basarke et al., 2007a. Basarke, C., Berger, C., Homeier, K., Rumpe, B.: Design
and quality assurance of intelligent vehicle functions in the ”virtual vehicle”.
Virtual Vehicle Creation (2007a)

508 F.W. Rauskolb et al.

Basarke et al., 2007b. Basarke, C., Berger, C., Rumpe, B.: Software & systems
engineering process and tools for the development of autonomous driving intel-
ligence. Journal of Aerospace Computing, Information, and Communication 4
(2007b)

Beck, 2005. Beck, K.: Extreme Programming Explained: Embrace Change.
Addison-Wesley, Reading (2005)

Beedle and Schwaber, 2002. Beedle, M., Schwaber, K.: Agile Software Develop-
ment with Scrum. Prentice-Hall, Englewood Cliffs (2002)

Bilmes, 1997. Bilmes, J.: A gentle tutorial on the em algorithm and its applica-
tion to parameter estimation for gaussian mixture and hidden markov models.
Technical report (1997)

Collins-Sussmann et al., 2004. Collins-Sussmann, B., Fitzpatrick, B.W., Pilato,
C.M.: Version Control with Subversion. O’Reilly, Sebastopol (2004)

Cormen et al., 2002. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Intro-
duction to Algorithms, 2nd edn. (2002)

DARPA, 2006. DARPA, Technical evaluation criteria (2006)
Duda and Hart, 1973. Duda, R.O., Hart, P.E.: Pattern Classification and Scene

Analysis. John Wiley & Sons Inc., Chichester (1973)
Edgewall Software, 2007. Edgewall Software, Trac. Edgewall Software (2007)
Gary Bradski, 2005. Bradski, G., Adrian Kaehler, V.P.: Learning-based computer

vision with intels open source computer vision library, pp. 126–139 (2005)
Heikkil and Silvn, 1996. Heikkil, J., Silvn, O.: Calibration procedure for short focal

length off-the-shelf ccd cameras. In: 13th International Conference on Pattern
Recognition, Vienna, Austria, pp. 166–170 (1996)

Kalman, 1960. Kalman, R.E.: A new approach to linear filtering and prediction
problems. In: Transactions of the ASME-Journal of Basic Engineering, pp. 35–
45 (1960)

Liggesmeyer, 2002. Liggesmeyer, P.: Software-Qualitaet: Testen, Analysieren und
Verifizieren von Software. Spektrum, Akad. Verl. (2002)

Nethercote and Seward, 2003. Nethercote, N., Seward, J.: Valgrind: A program su-
pervising framework. Theoretical Computer Science 89 (2003)

OpenCV Website, 2007. OpenCV Website, The open cv library (2007)
Pitteway and M.L.V., 1967. Pitteway, M.L.V.: Algorithmn for drawing ellipses or

hyperbolae with a digital plotter. Computer Journal 10(3), 282–289 (1967)
Rosenblatt, 1997. Rosenblatt, J.: DAMN: A Distributed Architecture for Mobile

Navigation. PhD thesis, Robotics Institute, Carnegie Mellon University, Pitts-
burgh, PA (1997)

Shafer, 1976. Shafer, G.: A Mathematical Theory of Evidence. Princeton University
Press, Princeton (1976)

Shafer, 1990. Shafer, G.: Perspectives on the theory and practice of belief functions.
International Journal of Approximate Reasoning (3), 1–40 (1990)

Thrun et al., 2006. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron,
A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oak-
ley, C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C., Jen-
drossek, L.-E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen,
E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian,
A., Mahoney, P.: Winning the darpa grand challenge. Journal of Field Robotics
(2006)

Ulrich and Nourbakhsh, 2000. Ulrich, I., Nourbakhsh, I.: Appearance-based obsta-
cle detection with monocular color vision. In: Proceedings of the AAAI National
Conference on Artificial Intelligence, Austin, TX, pp. 866–871 (2000)

	Caroline: An Autonomously Driving Vehicle for Urban Environments
	Motivation and Introduction
	2007 DARPA Urban Challenge
	System Architecture
	System Modules
	Sensor Fusion
	Vision
	Artificial Intelligence
	Vehicle Control
	Safety

	System Development Process
	Simulator
	Quality Assurance

	The Race and Discussion
	National Qualification Event
	Mandatory Practice for DARPA Urban Challenge Final Event
	DARPA Urban Challenge Final Event

	Conclusion
	References

