Abstract
Mid-way through the 2007 DARPA Urban Challenge, MIT’s robot ‘Talos’ and Team Cornell’s robot ‘Skynet’ collided in a low-speed accident. This accident was one of the first collisions between full-sized autonomous road vehicles. Fortunately, both vehicles went on to finish the race and the collision was thoroughly documented in the vehicle logs. This collaborative study between MIT and Cornell traces the confluence of events that preceded the collision and examines its root causes. A summary of robot–robot interactions during the race is presented. The logs from both vehicles are used to show the gulf between robot and human-driver behavior at close vehicle proximities. Contributing factors are shown to be: (1) difficulties in sensor data association leading an inability to detect slow-moving vehicles and phantom obstacles, (2) failure to anticipate vehicle intent, and (3) an over-emphasis on lane constraints versus vehicle proximity in motion planning. Finally, we discuss approaches that could address these issues in future systems, such as inter-vehicle communication, vehicle detection and prioritized motion planning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
DARPA Urban Challenge rules (2007), http://www.darpa.mil/GRANDCHALLENGE/rules.asp
Ferguson, D., Stentz, A., Thrun, S.: Pao* for planning with hidden state. In: Proceedings of the 2004 International Conference on Robotics and Automation, vol. 3, pp. 2840–2847 (2004)
Frazzoli, E., Dahleh, M.A., Feron, E.: Real-time motion planning for agile autonomous vehicles. Journal of Guidance, Control, and Dynamics 25(1), 116–129 (2002)
Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., Fletcher, L., Frazzoli, E., Huang, A., Karaman, S., Koch, O., Kuwata, Y., Moore, D., Olson, E., Peters, S., Teo, J., Truax, R., Walter, M., Barrett, D., Epstein, A., Mahelona, K., Moyer, K., Jones, T., Buckley, R., Attone, M., Galejs, R., Krishnamurthy, S., Williams, J.: A perception driven autonomous urban robot. Submitted to International Journal of Field Robotics (2008)
Martin, M., Moravec, H.: Robot evidence grids. Technical Report CMU-RI-TR-96-06, The Robotics Institute, Carnegie Mellon University, Pittsburgh (1996)
Miller, I., Campbell, M.: Rao-blackwellized particle filtering for mapping dynamic environments. In: Proceedings of the 2007 International Conference on Robotics and Automation, pp. 3862–3869 (2007)
Miller, I., Campbell, M., Huttenlocher, D., Nathan, A., Kline, F.-R., Moran, P., Zych, N., Schimpf, B., Lupashin, S., Kurdziel, M., Catlin, J., Fujishima, H.: Team cornell’s skynet: Robust perception and planning in an urban environment. Submitted to International Journal of Field Robotics (2008)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Pearson Education, Inc., Upper Saddle River, New Jersey (2003)
Stanford Racing Team, Stanford’s robotic vehicle Junior: Interim report (2007), http://www.darpa.mil/GRANDCHALLENGE/TechPapers/Stanford.pdf
Sukthankar, R.: Situational Awareness for Tactical Driving. PhD thesis, The Robotics Institute, Carnegie Mellon University (1997)
Tartan Racing, Tartan racing: A multi-modal approach to the DARPA urban challenge (2007), http://www.darpa.mil/GRANDCHALLENGE/TechPapers/Tartan_Racing.pdf
Willemsen, P., Kearney, J.K., Wang, H.: Ribbon networks for modeling navigable paths of autonomous agents in virtual urban environments. In: Proceedings of IEEE Virtual Reality 2003, pp. 22–26 (2003)
Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., Markey, C., Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P.: Stanley: The robot that won the DARPA Grand Challenge. Journal of Field Robotics 23(9), 661–692 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Fletcher, L. et al. (2009). The MIT – Cornell Collision and Why It Happened. In: Buehler, M., Iagnemma, K., Singh, S. (eds) The DARPA Urban Challenge. Springer Tracts in Advanced Robotics, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03991-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-03991-1_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03990-4
Online ISBN: 978-3-642-03991-1
eBook Packages: EngineeringEngineering (R0)