Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 247))

  • 774 Accesses

Abstract

This chapter provides an introduction and motivates the leading thread of the following ten chapters that were collected to present some of the most recent advances in neural processing models, concerning both the analysis of theoretical properties of novel neural architectures and the illustration of some real–world applications. Not pretending to be exhaustive, this chapter and the whole book delineate an evolving picture of connectionism, in which neural information systems are moving towards approaches that try to exploit the symbolic information available mostly as relations among the data and to specialize themselves, sometimes based on biological inspiration, to cope with difficult applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Alencar Barreto, G., Araujo, A., Kremer, S.: A taxonomy for spatiotemporal connectionist networks revisited: The unsupervised case. Neural Computation 15(6), 1255–1320 (2003)

    Article  Google Scholar 

  2. Alessandri, A., Sanguineti, M., Maggiore, M.: Optimization–based learning with bounded error for feedforward neural networks. IEEE Transactions on Neural Networks 13, 261–273 (2002)

    Article  Google Scholar 

  3. Bianchini, M., Gori, M., Sarti, L., Scarselli, F.: Recursive processing of cyclic structures. IEEE Transactions on Neural Networks 17(1), 10–18 (2006)

    Article  Google Scholar 

  4. Bianchini, M., Gori, M., Scarselli, F.: Processing directed acyclic graphs with recursive neural networks. IEEE Transactions on Neural Networks 12(6), 1464–1470 (2001)

    Article  Google Scholar 

  5. Bianchini, M., Maggini, M., Sarti, L., Scarselli, F.: Recursive neural networks for processing graphs with labelled edges: Theory and applications. Neural Networks 18(8), 125–130 (2005)

    Article  Google Scholar 

  6. Bianchini, M., Scarselli, F.: Artificial neural networks for processing graphs with application to image understanding: A survey. In: Jeong, J., Damiani, E. (eds.) Multimedia Techniques for Device and Ambient Intelligence, pp. 179–199. Springer, US (2009)

    Chapter  Google Scholar 

  7. Biehl, M., Gosh, A., Hammer, B.: Dynamics and generalization ability of LVQ algorithms. Journal of Machine Learning Research 8, 323–360 (2007)

    Google Scholar 

  8. Burger, M., Neubauer, A.: Analysis of Tikhonov regularization for function approximation by neural networks. Neural Networks 16, 79–90 (2002)

    Article  Google Scholar 

  9. Collins, M., Duffy, N.: Convolution kernels for natural language. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems. MIT Press, Cambridge (2002)

    Google Scholar 

  10. Farkas, I., Mikkulainen, R.: Modeling the self–organization of directional selectivity in the primary visual cortex. In: Proc. of the International Conference on Artificial Neural Networks, pp. 251–256. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. Frasconi, P., Gori, M., Kuechler, A., Sperduti, A.: From sequences to data structures: Theory and applications. In: Kolen, J., Kremer, S. (eds.) A Field Guide to Dynamic Recurrent Networks. IEEE Press, Los Alamitos (2001)

    Google Scholar 

  12. Frasconi, P., Gori, M., Sperduti, A.: A general framework for adaptive processing of data structures. IEEE Transactions on Neural Networks 9(5), 768–786 (1998)

    Article  Google Scholar 

  13. Fumera, G., Roli, F.: A theoretical and experimental analysis of linear combiners for multiple classifier systems. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 942–956 (2005)

    Article  Google Scholar 

  14. Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: Hardness results and efficient alternatives. In: Proc. of the 16th Annual Conference on Computational Learning Theory and the 7th Kernel Workshop, pp. 129–143 (2003)

    Google Scholar 

  15. Hashem, S.: Optimal linear combination of neural networks. Neural Networks 10, 599–614 (1997)

    Article  Google Scholar 

  16. Hinton, G.: Mapping part–whole hierarchies into connectionist networks. Artificial Intelligence 46, 47–75 (1990)

    Article  Google Scholar 

  17. Kohonen, T., Sommervuo, P.: How to make large self–organizing maps fon nonvectorial data. Neural Networks 15(8-9), 945–952 (2002)

    Article  Google Scholar 

  18. Küchler, A., Goller, C.: Inductive learning in symbolic domains using structure–driven recurrent neural networks. In: Görz, G., Hölldobler, S. (eds.) KI 1996. LNCS, vol. 1137, pp. 183–197. Springer, Heidelberg (1996)

    Google Scholar 

  19. Kurkova, V.: Minimization of error functionals over perceptron networks. Neural Computation 20(1), 252–270 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Plate, T.: Holographic reduced representation. IEEE Transactions on Neural Networks 6, 623–641 (1995)

    Article  Google Scholar 

  21. Pollack, J.: Recursive distributed representations. Artificial Intelligence 46(1-2), 77–106 (1990)

    Article  Google Scholar 

  22. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Transactions on Neural Networks 20(1), 61–80 (2009)

    Article  Google Scholar 

  23. Sperduti, A.: Labeling RAAM. Connection Science 6(4), 77–106 (1994)

    Article  Google Scholar 

  24. Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures. IEEE Transactions on Neural Networks 8(3), 714–735 (1997)

    Article  Google Scholar 

  25. Trentin, E., Gori, M.: Robust combination of neural networks and hidden Markov models for speech recognition. IEEE Transactions on Neural Networks 14(6), 1519–1531 (2003)

    Article  Google Scholar 

  26. Vishwanathan, S., Smola, A.: Fast kernels for string and tree matching. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, MIT Press, Cambridge (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bianchini, M., Maggini, M., Scarselli, F., Jain, L.C. (2009). Advances in Neural Information Processing Paradigms. In: Bianchini, M., Maggini, M., Scarselli, F., Jain, L.C. (eds) Innovations in Neural Information Paradigms and Applications. Studies in Computational Intelligence, vol 247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04003-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04003-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04002-3

  • Online ISBN: 978-3-642-04003-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics