Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 247))

Background

Artificial Neural Networks (ANNs) (Haykin, 1998) are universal function approximators (Hornik et al., 1989) with adaptive behaviour based on gradient descent in error space (Werbos, 1994) and other methods. These networks have been applied to a wide variety of problems from a broad range of domains that can be formulated as vectorto- vector mappings. That is, the function to be approximated must be represented as a function whose domain and whose range are given by two vector spaces (Figure 1). Many methods have been used to translate data into such spaces. A variety of interesting problems, including those that process measurements from a fixed set of sensors naturally lend themselves to vector representations.When data is not easily encoded in fixed-size vectors, a number of transformations of data have been proposed including padding the data, frequency space representations, windowing and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anger, D.L., Foster, W.G.: The link between environmental toxicant exposure and endometriosis. Frontiers in bioscience: a journal and virtual library 1(13), 1578–1593 (2008)

    Article  Google Scholar 

  • bison, Bison - gnu parser generator (2008), http://www.gnu.org/software/bison/

  • Blair, R.M., Fang, H., Branham, W.S., Hass, B.S., Dial, S.L., Moland, C.L., Tong, W., Shi, L., Perkins, R., Sheehan, D.M.: The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicological Sciences 54(1), 138–153 (2000)

    Article  Google Scholar 

  • Branham, W.S., Dial, S.L., Moland, C.L., Hass, B.S., Blair, R.M., Fang, H., Shi, L., Tong, W., Perkins, R.G., Sheehan, D.M.: Phytoestrogen and mycoestrogen bind to the rat uterine estrogen receptor. Journal of Nutrition 132(4), 658–664 (2002)

    Google Scholar 

  • Dalby, A., Nourse, J.G., Hounshell, W.D., Gushurst, A.K.I., Grier, D.L., Leland, B.A., Laufer, J.: Description of several chemical structure file formats used by computer programs developed at molecular design limited. Journal of chemical information and computer sciences 32(3), 244–255 (1992)

    Google Scholar 

  • de, A., Barreto, G., Araújo, A.F.R., Kremer, S.C.: A taxonomy for spatiotemporal connectionist networks revisited: the unsupervised case. Neural Compututation 15(6), 1255–1320 (2003)

    Article  MATH  Google Scholar 

  • Fang, H., Tong, W.D., Branham, W.S., Moland, C.L., Dial, S.L., Hong, H.X., Xie, Q., Perkins, R., Owens, W., Sheehan, D.M.: Study of 202 natural, synthetic and environmental chemicals for binding to the androgen receptor. Chemical research in toxicology 16(10), 1338–1358 (2003)

    Article  Google Scholar 

  • flex (2008), flex - the fast lexical analyzer, http://flex.sourceforge.net/

  • Frasconi, P., Gori, M., Kuechler, A., Sperduti, A.: From sequences to data structures: Theory and applications. In: Kolen, J., Kremer, S. (eds.) A Field Guide to Dynamic Recurrent Networks, pp. 351–374. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  • Fu, K.-S.: Syntactic Pattern Recognition and Applications. Longman Higher Education (1982)

    Google Scholar 

  • GOLD Parsing System, Gold parsing system - a free, multi-programming language, parser generator (2008), http://www.devincook.com/goldparser/

  • Guha, R., Howard, M.T., Hutchison, G.R., Murray-Rust, P., Rzepa, H., Steinbeck, C., Wegner, J.K., Willighagen, E.: The blue obelisk – interoperability in chemical informatics. Journal of chemical information and modeling 46(3), 991–998 (2006)

    Article  Google Scholar 

  • Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Englewood Cliffs (1998)

    Google Scholar 

  • Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In: Kolen, J., Kremer, S. (eds.) A Field Guide to Dynamic Recurrent Networks, pp. 237–243. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  • Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359–366 (1989)

    Article  Google Scholar 

  • James, C.A.: Opensmiles specification (2007), http://www.opensmiles.org/spec/open-smiles.html

  • Kolen, J.F., Kremer, S.C. (eds.): A Field Guide to Dynamical Recurrent Networks. Wiley-IEEE Press (2001)

    Google Scholar 

  • Kremer, S.C.: On the computational power of Elman-style recurrent networks. IEEE Transactions on Neural Networks 6(4), 1000–1004 (1995)

    Article  Google Scholar 

  • Kremer, S.C.: Spatiotemporal connectionist networks: A taxonomy and review. Neural Computation 13(2), 249–306 (2001)

    Article  MATH  Google Scholar 

  • NCTR, Nctr center for toxicoinformatics - edkb home page(2007), http://www.fda.gov/nctr/science/centers/toxicoinformatics/edkb/index.htm

  • OpenBabel, The open babel package, version 2.1.1 (2008), http://www.openbabel.org

  • Rumberlhart, D., Hinton, G., Williams, R.: Chapter 9: Learning internal representation by error propagation. In: McClelland, J.L., Rumelhart, D., P.D.P. Group (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Foundations, vol. 1, MIT Press, Cambridge (1986)

    Google Scholar 

  • Shi, L.M., Fang, H., Tong, W., Wu, J., Perkins, R., Blair, R.M., Branham, W.S., Dial, S.L., Moland, C.L., Sheehan, D.M.: Qsar models using a large diverse set of estrogens. Journal of Chemical Information and Computer Sciences 41(1), 186–195 (2001)

    Google Scholar 

  • Stein, S.E., Heller, S.R., Tchekhovskoi, D.V.: The IUPAC Chemical Identifier Technical Manual. Gaithersburg, Maryland, USA (2006), http://old.iupac.org/inchi/download/index.html

  • Tong, W., Hong, H., Fang, H., Xie, Q., Perkins, R.: Decision forest: Combining the predictions of multiple independent decision tree models. Journal of Chemical Information and Computer Sciences 43(2), 525–531 (2003)

    Google Scholar 

  • Werbos, P.J.: The roots of backpropagation: from ordered derivatives to neural networks and political forecasting. Wiley Interscience, New York (1994)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ma, E.Y.T., Kremer, S.C. (2009). Neural Grammar Networks. In: Bianchini, M., Maggini, M., Scarselli, F., Jain, L.C. (eds) Innovations in Neural Information Paradigms and Applications. Studies in Computational Intelligence, vol 247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04003-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04003-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04002-3

  • Online ISBN: 978-3-642-04003-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics