Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5755))

Included in the following conference series:

Abstract

Gene expression profiles consisting of thousands of genes can describe the characteristics of specific cancer subtype. By efficiently using the overall scheme of gene expression, accurate tumor diagnosis can be performed well in clinical medicine. However, faced many problems such as too much noise and the curse of dimensionality that the number of genes far exceeds the size of samples in tumor dataset, tumor classification by selecting a small set of gene subset from the thousands of genes becomes a challenging task. This paper proposed a novel high accuracy method, which utilized the global scheme of differentially expressed genes corresponding to each tumor subtype which is determined by tumor-related genes, to classify tumor samples by using Minimum Average Correlation Energy (MACE) filter method to computing the similarity degree between a test sample with unknown label in test set and the template constructed with training set. The experimental results obtained on two actual tumor datasets indicate that the proposed method is very effective and robust in classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dabney, A.R.: Classification of microarrays to nearest centroids. Bioinformatics 21(22), 4148–4154 (2005)

    Article  Google Scholar 

  2. Wang, L.P., Chu, F., Xie, W.: Accurate cancer classification using expressions of very few genes. IEEE/ACM Transactions on computational biology and bioinformatics 4(1), 40–53 (2007)

    Article  MathSciNet  Google Scholar 

  3. Huang, H.L., Lee, C.C., Ho, S.Y.: Selecting a minimal number of relevant genes from microarray data to design accurate tissue classifiers. BioSystems 90(1), 78–86 (2007)

    Article  Google Scholar 

  4. Sreekumar, J., Jose, K.K.: Statistical tests for identification of differentially expressed genes in cDNA microarray experiments. Indian Journal of Biotechnology 7(4), 423–436 (2008)

    Google Scholar 

  5. Deng, L., Ma, J.W., Pei, J.: Rank sum method for related gene selection and its application to tumor diagnosis. Chinese Science Bulletin 49(15), 1652–1657 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Li, L.P., Darden, T.A., Weinberg, C.R., Levine, A.J., Pedersen, L.G.: Gene assessment and sample classification for gene expression data using a genetic algorithm/k-nearest neighbor method. Combinatorial Chemistry & High Throughput Screening 4(8), 727–739 (2001)

    Google Scholar 

  7. Zhou, X., Tuck, D.P.: MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data. Bioinformatics 23(9), 1106–1114 (2007)

    Article  Google Scholar 

  8. Troyanskaya, O.G., Garber, M.E., Brown, P.O., Botstein, D., Altman, R.B.: Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics 18(11), 1454–1461 (2002)

    Article  Google Scholar 

  9. Lehmann, E.L.: Non-parametrics: Statistical methods based on ranks, Holden-Day, San Francisco (1975)

    Google Scholar 

  10. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)

    Article  Google Scholar 

  11. Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47(260), 583–621 (1952)

    Article  MATH  Google Scholar 

  12. Mahalanobis, A., Kumar, B.V.K., Casasent, D.: Minimum average correlation energy filters. Appl. Opt. 26, 3633–3640 (1987)

    Article  Google Scholar 

  13. Kumar, B.V.: Tutorial survey of composite filter designs for optical correlators. Appl. Opt. 31, 4773–4801 (1992)

    Article  Google Scholar 

  14. Kumar, B.V., Savvides, V.M.K., Xie, C., Thornton, J., Mahalanobis, A.: Biometric verification using advanced correlation filters. Appl. Opt. 43, 391–402 (1992)

    Article  Google Scholar 

  15. Kumar, B.V.: Minimum variance synthetic discriminant functions. Opt. Soc. Am. A 3, 1579–1584 (1986)

    Article  Google Scholar 

  16. Yeoh, E.J., Ross, M.E., Shurtleff, S.A., Williams, W.K., Patel, D., Mahfouz, R., Behm, F.G., Raimondi, S.C., Relling, M.V., Patel, A., Cheng, C., Campana, D., Wilkins, D., Zhou, X., Li, J., Liu, H., Pui, C.H., Evans, W.E., Naeve, C., Wong, L., Downing, J.R.: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1(2), 133–143 (2002)

    Article  Google Scholar 

  17. Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., Meltzer, P.S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7(6), 673–679 (2001)

    Article  Google Scholar 

  18. Deutsch, J.M.: Evolutionary algorithms for finding optimal gene sets in microarray prediction. Bioinformatics 19(1), 45–52 (2003)

    Article  Google Scholar 

  19. Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America 99(10), 6567–6572 (2002)

    Article  Google Scholar 

  20. Dabney, A.R., Storey, J.D.: Optimality driven nearest centroid classification from genomic data. PLoS ONE 2(10), e1002 (2007), doi:10.1371/journal.pone.0001002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, S., Zhu, Y. (2009). A Novel Method to Robust Tumor Classification Based on MACE Filter. In: Huang, DS., Jo, KH., Lee, HH., Kang, HJ., Bevilacqua, V. (eds) Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence. ICIC 2009. Lecture Notes in Computer Science(), vol 5755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04020-7_102

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04020-7_102

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04019-1

  • Online ISBN: 978-3-642-04020-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics