Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5755))

Included in the following conference series:

  • 1591 Accesses

Abstract

Now the classification of different tumor types is of great importance in cancer diagnosis and drug discovery. It is more desirable to create an optimal ensemble for data analysis that deals with few samples and large features. In this paper, a new ensemble method for cancer data classification is proposed. The gene expression data is firstly preprocessed for normalization. Kernel Principal Component Analysis (KPCA) is then applied to extract features. Secondly, an intelligent approach is brought forward, which uses Support Vector Machine (SVM) as the base classifier and applied with Binary Particle Swarm Optimization (BPSO) for constructing ensemble classifiers. The leukemia and colon datasets are used for conducting all the experiments. Results show that the proposed method produces a good recognition rate comparing with some other advanced artificial techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sarkar, I., Planet, P., Bael, T., Stanley, S., Siddall, M., DeSalle, R.: Characteristic Attributes in Cancer Microarrays. Computers and Biomedical Research 35(2), 111–122 (2002)

    Google Scholar 

  2. Koller, D., Sahami, M.: Towards optimal feature selection. In: Machine Learning, Proceeding of 13th Int. Conf. (1996)

    Google Scholar 

  3. Azuaje, F.: A Computational Neural approach to Support the Discovery of Gene Function and Classes of Cancer. IEEE Transactions on Biomedical Engineering 48(3), 332–339 (2001)

    Article  Google Scholar 

  4. Li, L., Weinberg, C., Darden, T., Pedersen, L.: Gene Selection for Sample Classification Based on Gene Expression Data: Study of Sensitivity to Choice of Parameters of the GA/KNN Method. Bioinformatics 17(12), 1131–1142 (2001)

    Article  Google Scholar 

  5. Camp, N., Slattery, M.: Classification Tree Analysis: A Statistical Tool to Investigate Risk Factor Interactions with an Example for Colon Cancer. Cancer Causes Contr. 13(9), 813–823 (2002)

    Article  Google Scholar 

  6. Chen, Y., Peng, L., Abraham, A.: Gene expression profiling using flexible neural trees. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 1121–1128. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Tan, A., Gilbert, D.: Ensemble Machine Learning on Gene Expression Data for Cancer Classification. Applied Bioinformatics 2(3), 75–83 (2003)

    Google Scholar 

  8. Sergios, T., Konstantinos, K.: Pattern Recognition. China Machine Press (2002)

    Google Scholar 

  9. Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  10. Yang, J., Yang, J.Y., Frangi, A.F.: Combined Fisherfaces framework. Image and Vision Computing 21, 1037–1044 (2003)

    Article  Google Scholar 

  11. Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  12. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1999)

    Google Scholar 

  13. Kennedy, J., Eberhard, R.C.: Particle Swarm Optimization. In: Proceeding of IEEE International Conf. on Neural Networks, Piscataway, NJ, USA, pp. 1942–1948 (1995)

    Google Scholar 

  14. Zhou, Z.H., Wu, J., Tang, W.: Ensembling Neural Networks: Many Could Be Better Than All. Artificial Intelligence 137(1-2), 239–263 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kennedy, J., Eberhart, R.C.: A Discrete Binary Version of the Particle Swarm Optimization. In: Proceeding Of the conference on Systems, Man, and Cybernetics SMC 1997, pp. 4104–4109 (1997)

    Google Scholar 

  16. Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M., Yakhini, N.: Tissue classification with gene expression profiles. Computational Biology 7, 559–584 (2000)

    Article  Google Scholar 

  17. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., GaasenBeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Blomfield, C.D., Lander, E.S.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286(12), 531–537 (1999)

    Article  Google Scholar 

  18. Eisen, M.B., Brown, B.O.: DNA Arrays for Analysis of Gene Expression. Methods in Enzymology 303, 179–205 (1999)

    Article  Google Scholar 

  19. Cho, S.B.: Exploring Features and Classifiers to Classify Gene Expression Profiles Of acute Leukemia. Artifical Intellegence 16(7), 1–13 (2002)

    Google Scholar 

  20. Harrington, C.A., Rosenow, C., Retief, J.: Monitoring Gene Expression Using DNA Microarrays. Curr. Opin. Microbiol. 3, 285–291 (2000)

    Article  Google Scholar 

  21. Zhao, Y., Chen, Y., Zhang, X.: A novel ensemble approach for cancer data classification. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4492, pp. 1211–1220. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, J., Pan, Y., Chen, Y., Liu, Y. (2009). Ensemble Classifiers Based on Kernel PCA for Cancer Data Classification. In: Huang, DS., Jo, KH., Lee, HH., Kang, HJ., Bevilacqua, V. (eds) Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence. ICIC 2009. Lecture Notes in Computer Science(), vol 5755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04020-7_103

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04020-7_103

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04019-1

  • Online ISBN: 978-3-642-04020-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics