Skip to main content

A Novel Local Sensitive Frontier Analysis for Feature Extraction

  • Conference paper
  • 1464 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5755))

Abstract

In this paper, an efficient feature extraction method, named local sensitive frontier analysis (LSFA), is proposed. LSFA tries to find instances near the crossing of the multi-manifold, which are sensitive to classification, to form the frontier automatically. For each frontier pairwise, those belonging to the same class are applied to construct the sensitive within-class scatter; otherwise, they are applied to form the sensitive between-class scatter. In order to improve the discriminant ability of the instances in low dimensional subspace, a set of optimal projection vectors has been explored to maximize the trace of the sensitive within-class scatter and simultaneously, to minimize the trace of the sensitive between-class scatter. Moreover, with comparisons to some unsupervised methods, such as Unsupervised Discriminant Projection (UDP), as well as some other supervised feature extraction techniques, for example Linear Discriminant Analysis (LDA) and Locality Sensitive Discriminant Analysis (LSDA), the proposed method obtains better performance, which has been validated by the results of the experiments on YALE face database.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tenenbaum, J.B., Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  2. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction By Locally Linear Embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  3. Zhang, J.P., Shen, H.X., Zhou, Z.H.: Unified Locally Linear Embedding and Linear Discriminant Analysis Algorithm for Face Recognition. LNCS (2004)

    Google Scholar 

  4. Belkin, M., Niyogi, P.: Laplacian Eigenmaps and Spectral Techniques For Embedding And Clustering. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 585–591. MIT Press, Cambridge (2002)

    Google Scholar 

  5. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  6. Zhang, Z., Zha, H.: Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment. SIAM J. Scientific Computing 26(1), 313–338 (2005)

    Article  MathSciNet  Google Scholar 

  7. Weinberger, K., Saul, L.: Unsupervised Learning of Image Manifolds by Semidefinite Programming. In: Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 988–995 (2004)

    Google Scholar 

  8. Vandenberghe, L., Boy, S.P.: Semidefinite Programming. SIAM Review 38(1), 49–95 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Weinberger, K.Q., Saul, L.K.: Unsupervised Learning of Image Manifolds by Semidefinite Programming. International Journal of Computer Vision 70(1), 77–90 (2006)

    Article  Google Scholar 

  10. Lin, T., Zha, H.B.: Riemannian Manifold Learning. IEEE Trans. Pattern Analysis and Machine Intelligence 30(5), 796–809 (2008)

    Article  Google Scholar 

  11. Saul, L.K., Roweis, S.T.: Think Globally, Fit locally: Unsupervised Learning of Low Dimensional Manifolds. J. Mach. Learning Res. 4, 119–155 (2003)

    Article  MathSciNet  Google Scholar 

  12. He, X., Niyogi, P.: Locality Preserving Projections. In: Advances in Neural Information Processing Systems 16, Vancouver, Canada (2003)

    Google Scholar 

  13. He, X., Yang, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face Recognition Using Laplacianfaces. IEEE Trans. Pattern Analysis and Machine Intelligence 27(3), 328–340 (2005)

    Article  Google Scholar 

  14. Yang, J., Zhang, D., Yang, J.Y., Niu, B.: Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Application to Face and Palm Biometrics. IEEE Trans. Pattern Analysis and Machine Intelligence 29(4), 650–664 (2007)

    Article  Google Scholar 

  15. Yan, S.C., Xu, D., Zhao, B.Y., Zhang, H.J., Yang, Q., Lin, S.: Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. IEEE Transactions On Pattern Analysis and Machine Intelligence 29(1), 40–51 (2007)

    Article  Google Scholar 

  16. Cai, D., He, X., Zhou, K., Han, J., Bao, H.: Locality Sensitive Discriminant Analysis. In: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (2007)

    Google Scholar 

  17. Wang, F., Zhang, C.S.: Feature Extraction by Maximizing the Average Neighborhood Margin. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007), doi:10.1109/CVPR.2007.383124

    Google Scholar 

  18. Li, B., Zheng, C.H., Huang, D.S.: Locally Linear Discriminant Embedding: An Efficient Method for Face Recognition. Pattern Recognition 41(12), 3813–3821 (2008)

    Article  MATH  Google Scholar 

  19. Qiu, X., Wu, L.: Face Recognition by Stepwise Nonparametric Margin Maximum Criterion. In: Tenth IEEE International Conference on Computer Vision 2005, ICCV 2005, vol. 2(17-21), pp. 1567–1572 (2005)

    Google Scholar 

  20. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra, http://www.math.uwaterloo.ca/~snburris/htdocs/UALG/univ-algebra.pdf

  21. Huang, D.S., Li, B., Wang, C.: A Hybrid Generalized Fisher Framework for Dimensionality Reduction. Technical Report of Intelligent Computing Laboratory

    Google Scholar 

  22. Yan, S.C., Tang, X.: Trace Quotient Problems Revisited. In: ECCV (2), pp. 232–244 (2006)

    Google Scholar 

  23. Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–76 (1991)

    Article  Google Scholar 

  24. Peter, N., Belhumeur, J.P., Hepanha, K.D.J.: Eigenface vs. Fisherfaces: Recognition Using class Specific Linear Projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  25. Yale Univ. Face Database (2002), http://cvc.yale.edu/projects/yalefaces/yalefaces.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, C., Huang, DS., Li, B. (2009). A Novel Local Sensitive Frontier Analysis for Feature Extraction. In: Huang, DS., Jo, KH., Lee, HH., Kang, HJ., Bevilacqua, V. (eds) Emerging Intelligent Computing Technology and Applications. With Aspects of Artificial Intelligence. ICIC 2009. Lecture Notes in Computer Science(), vol 5755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04020-7_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04020-7_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04019-1

  • Online ISBN: 978-3-642-04020-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics