Skip to main content

Evolutionary and Ant Colony Optimization Based Approaches for a Two-Dimensional Strip Packing Problem

  • Chapter
Natural Intelligence for Scheduling, Planning and Packing Problems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 250))

Abstract

In the last few years, metaheuristic approaches have shown an important development in many application areas. This situation has turned them into one of the more appropriate candidates when dealing with difficult real-world problems for which timely, good-quality solutions are necessary. Furthermore, the class of metaheuristic approaches includes a large number of variants and designs which mainly depend on the concepts from which they are inspired. This chapter aims at giving an overview of Evolutionary Algorithms and Ant Colony Optimization when applied to the two-dimensional strip packing problem. The respective performance of these two metaheuristics are analyzed and compared from different perspectives by implementing a Genetic Algorithm and an Ant Colony System.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alba, E., Luna, J., Moreno, L.M., Pablos, C., Petit, J., Rojas, A., Xhafa, F., Almeida, F., Blesa, M.J., Cabeza, J., Cotta, C., Díaz, M., Dorta, I., Gabarró, J., León, C.: MALLBA: A Library of Skeletons for Combinatorial Optimisation. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 927–932. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Alvarez-Valdés, R., Parreño, F., Tamarit, J.M.: A tabu search algorithm for a two-dimensional non-guillotine cutting problem. European Journal of Operational Research 183(3), 1167–1182 (2007)

    Article  MATH  Google Scholar 

  3. Alvarez-Valdés, R., Parreño, F., Tamarit, J.M.: Reactive GRASP for the strip-packing problem. Computers and Operations Research 35(4), 1065–1083 (2008)

    Article  MATH  Google Scholar 

  4. Araya, I., Neveu, B., Riff, M.: An efficient hyperheuristic for strip-packing problems. In: Cotta, C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Metaheuristics. SCI, vol. 136, pp. 61–76. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of evolutionary computation. Oxford University Press, New York (1997)

    Book  MATH  Google Scholar 

  6. Bortfeldt, A.: A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces. European Journal of Operational Research 172(3), 814–837 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boschetti, M., Maniezzo, V.: The two-dimensional finite bin packing problem. Part II. 4OR, 1(2):135–148 (2003)

    Google Scholar 

  8. Boschetti, M., Maniezzo, V.: An ant system heuristic for the two-dimensional finite bin packing problem: preliminary results. In: Multidisciplinary Methods for Analysis Optimization and Control of Complex Systems, ch. 7, pp. 233–247. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Burke, E.K., Kendall, G., Whitwell, G.: A new placement heuristic for the orthogonal stock-cutting problem. Operations Research 52(4), 697–707 (2004)

    Article  Google Scholar 

  10. Burke, E.K., Hellier, R., Kendall, G., Whitwell, G.: A new bottom-left-fill heuristic algorithm for the two-dimensional irregular packing problem. Operations Research 54(3), 587–601 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Burke, E.K., Kendall, G., Whitwell, G.: A simulated annealing enhancement of the best-fit heuristic for the orthogonal stock cutting problem. INFORMS Journal on Computing (2009) doi:10.1287/ijoc.1080.0306

    Google Scholar 

  12. Cerney, V.: A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. Optimization Theory an Applications 45, 41–51 (1985)

    Article  Google Scholar 

  13. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)

    Article  Google Scholar 

  14. Dorigo, M., Stützle, T.: The ant colony optimization metaheuristic: Algorithms, applications, and advances. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics (2002)

    Google Scholar 

  15. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  16. Fekete, S.P., Schepers, J.: On more-dimensional packing III: Exact algorithm. Technical Report ZPR97-290, Mathematisches Institut, Universität zu Köln (1997)

    Google Scholar 

  17. Glover, F., Kochenberg, G.A. (eds.): Handbook of Metaheuristics. Kuwler Academic Publishers, London (2003)

    MATH  Google Scholar 

  18. Grefenstette, J.J.: Incorporating problem specific knowledge into genetic algorithms. In: Davis, L. (ed.) Genetic Algorithms and Simulated Annealing, pp. 42–60. Morgan Kaufmann Publishers, San Francisco (1987)

    Google Scholar 

  19. Hopper, E., Turton, B.: A genetic algorithm for a 2D industrial packing problem. Computers and Industrial Engineering 37(1-2), 375–378 (1999)

    Article  Google Scholar 

  20. Hopper, E.: Two-dimensional packing utilising evolutionary algorithms and other meta-heuristic methods. PhD thesis, University of Wales, Cardiff, U.K (2000)

    Google Scholar 

  21. Hopper, E., Turton, B.: A review of the application of meta-heuristic algorithms to 2D strip packing problems. Artificial Intelligence Review 16, 257–300 (2001)

    Article  MATH  Google Scholar 

  22. Hopper, E., Turton, B.: An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. European Journal of Operational Research 128(1), 34–57 (2001)

    Article  MATH  Google Scholar 

  23. Imahori, S., Yagiura, M.: The best-fit heuristic for the rectangular strip packing problem: An efficient implementation and the worst-case approximation ratio. In: Computers and Operations Research (2009) doi:10.1016/j.cor.2009.05.008

    Google Scholar 

  24. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 4598, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  25. Levine, J., Ducatelle, F.: Ant colony optimization and local search for bin packing and cutting stock problems. Journal of the Operational Research Society (55), 705–716 (2004)

    Article  MATH  Google Scholar 

  26. Lodi, A., Martello, S., Monaci, M.: Recent advances on two-dimensional bin packing problems. Discrete Applied Mathematics 123, 379–396 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: a survey. European Journal of Operational Research 141, 241–252 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Martello, S., Monaci, S., Vigo, D.: An exact approach to the strip-packing problem. Informs Journal on Computing 15, 310–319 (2003)

    Article  MathSciNet  Google Scholar 

  29. Martello, S., Vigo, D.: Exact solution of the two-dimensional finite bin packing problem. Management Science 44, 388–399 (1998)

    Article  MATH  Google Scholar 

  30. Michalewicz, M.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd revised edn. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  31. Mumford-Valenzuela, C.L., Vick, J., Wang, P.Y.: Heuristics for large strip packing problems with guillotine patterns: An empirical study. In: Metaheuristics: Computer Decision-Making, pp. 501–522. Kluwer Academic Publishers, BV (2003)

    Google Scholar 

  32. Puchinger, J., Raidl, G.: An evolutionary algorithm for column generation in integer programming: An effective approach for 2d bin packing. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 642–651. Springer, Heidelberg (2004)

    Google Scholar 

  33. Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional bin packing. European Journal of Operational Research 183(3), 1304–1327 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Salto, C., Alba, E., Molina, J.M.: Greedy Seeding and Problem-Specific Operators for GAs Solving Strip Packing Problems. In: Optimization Techniques for Solving Complex Problems, pp. 361–378. John Wiley & Sons, Inc., Chichester (2008)

    Google Scholar 

  35. Salto, C., Molina, J.M., Alba, E.: Analysis of distributed genetic algorithms for solving cutting problems. International Transactions in Operational Research 13(5), 403–423 (2006)

    Article  MATH  Google Scholar 

  36. Salto, C., Molina, J.M., Alba, E.: Evolutionary algorithms for the level strip packing problem. In: Proceedings of NICSO, pp. 137–148 (2006)

    Google Scholar 

  37. Soke, A., Bingul, Z.: Hybrid genetic algorithm and simulated annealing for two-dimensional non-guillotine rectangular packing problems. Engineering Applications of Artificial Intelligence 19, 557–567 (2006)

    Article  Google Scholar 

  38. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing problems. European Journal of Operational Research 183(3), 1109–1130 (2007)

    Article  MATH  Google Scholar 

  39. Wang, P.Y., Valenzuela, C.L.: Data set generation for rectangular placement problems. EJOR 134, 378–391 (2001)

    Article  MATH  Google Scholar 

  40. Zhang, D., Chen, S., Liu, Y.: An improved heuristic recursive strategy based on genetic algorithm for the strip rectangular packing problem. Acta Automatica Sinica 33(9), 911–916 (2007)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salto, C., Leguizamón, G., Alba, E., Molina, J.M. (2009). Evolutionary and Ant Colony Optimization Based Approaches for a Two-Dimensional Strip Packing Problem. In: Chiong, R., Dhakal, S. (eds) Natural Intelligence for Scheduling, Planning and Packing Problems. Studies in Computational Intelligence, vol 250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04039-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04039-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04038-2

  • Online ISBN: 978-3-642-04039-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics