Abstract
A new multi-criterial methodology is introduced for the combined structural and operational optimization of energy supply systems and production processes. The methodology combines a multi-criterial evolutionary optimizer for structural optimization with a code for the operational optimization and simulation. The genotype of the individuals is interpreted with a superstructure. The methodology is applied to three real world case studies: one communal and one industrial energy supply system, one distillation plant. The resulting Pareto fronts and potentials for cost reduction and ecological savings are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Augenstein, E. & Herbergs, S. (2005). Simulation of industrial energy supply systems with integrated cost optimization. In 18th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Athens.
Augenstein, E., Wrobel, G., Kuperjans, I., & Plessow, M. (2004). Top-energy: computational support for energy system engineering processes. In First international conference from scientific computing to computational engineering, Athens.
Bouvy, C. (2007). Kombinierte Struktur- und Einsatzoptimierung von Energieversorgungssystemen mit einer Evolutionsstrategie. Ph.D. thesis, RWTH Aachen University.
Bouvy, C. & Lucas, K. (2007). Multicriterial optimisation of communal energy supply concepts. Energy Conversion and Management, 48(11), 2827–2835.
Eiben, A. & Smith, J. (2003). Introduction to Evolutionary Computing. Natural Computing Series. Springer.
Emmerich, M., Beume, N., & Naujoks, B. (2005). An EMO algorithm using the hypervolume measure as selection criterion. In C. Coello Coello (Ed.), Evolutionary Multi-Criterion Optimization (EMO 2005) (pp. 62–76). Berlin: Springer.
Henrich, F., Bouvy, C., Kausch, C., Lucas, K., Preuss, M., Rudolph, G., & Roosen, P. (2008). Economic optimization of non-sharp separation sequences by means of evolutionary algorithms. Computers & Chemical Engineering, 32(7), 1411–1432.
Preuss, M., Kausch, C., Bouvy, C., & Henrich, F. (2008). Decision space diversity can be essential for solving multiobjective real-world problems. In M. Ehrgott (Ed.), 19th International Conference on Multiple Criteria Decision Making.
Schwefel, H. (1995). Evolution and Optimum Seeking. New York: Wiley.
Thomassen, M. & de Boer, I. (2005). Evaluation of indicators to assess the environmental impact of dairy production systems. Agriculture, ecosystems & environment, 111(1–4), 185–199.
Acknowledgements
Authors thankfully acknowledge the financial support of the DFG, the German Research Foundation, in the context of the project “Mehrkriterielle Struktur- und Parameteroptimierung verfahrenstechnischer Prozesse mit evolutionären Algorithmen am Beispiel gewinnorientierter unscharfer destillativer Trennprozesse”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bouvy, C., Kausch, C., Preuss, M., Henrich, F. (2010). On the Potential of Multi-objective Optimization in the Design of Sustainable Energy Systems. In: Ehrgott, M., Naujoks, B., Stewart, T., Wallenius, J. (eds) Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems. Lecture Notes in Economics and Mathematical Systems, vol 634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04045-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-04045-0_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04044-3
Online ISBN: 978-3-642-04045-0
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)