Skip to main content

Constrained Maximum Variance Mapping for Tumor Classification

  • Conference paper
Emerging Intelligent Computing Technology and Applications (ICIC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5754))

Included in the following conference series:

Abstract

It is of great importance to classify the gene expression data into different classes. In this paper, followed the assumption that the gene expression data of tumor may be sampled from the data with a probability distribution on a sub-manifold of ambient space, an efficient feature extraction method named as Constrained Maximum Variance Mapping (CMVM), is presented for tumor classification. The proposed algorithm can be viewed as a linear approximation of multi-manifolds learning based approach, which takes the local geometry and manifold labels into account. The proposed CMVM method was tested on four DNA microarray datasets, and the experimental results demonstrated that it is efficient for tumor classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, K.Y., Ki, D.H., Jeung, H.C., Chung, H.C., Rha, S.Y.: Improving the Prediction Accuracy in Classification Using the Combined Data Sets by Ranks of Gene Expressions. BMC Bioinformatic 9, 283 (2008)

    Article  Google Scholar 

  2. Zhu, M.L., Martinez, A.M.: Using the Information Embedded in the Testing Sample to Break the Limits Caused by the Small Sample Size in Microarray-based Classification. BMC Bioinformatics 9, 280 (2008)

    Article  Google Scholar 

  3. Yeoh, E.J., Ross, M.E., Shurtleff, S.A., Williams, W.K., Patel, D., Mahfouz, R., Behm, F.G., Raimondi, S.C., Relling, M.V., Patel, A., et al.: Classification, Subtype Discovery, and Prediction of Outcome in Pediatric Acute Lymphoblastic Leukemia by Gene Expression Profiling. Cancer Cell 1, 133–143 (2002)

    Article  Google Scholar 

  4. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  5. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computatio 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  6. Bai, X.M., Yin, B.C., Shi, Q., Sun, Y.F.: Face Recognition Based on Supervised Locally Linear Embedding Method. Journal of Information & Computation Science 4, 641–646 (2005)

    Google Scholar 

  7. Dudoit, S., Fridyland, J.F., Speed, T.P.: Comparison of Discrimination Methods for the Classification of Tumor Using Gene Expression Data. Journal of the American statistical association 97, 77–87 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., et al.: Gene Expression Correlates of Clinical Prostate Cancer Behavior. Cancer Cell 1, 203–209 (2002)

    Article  Google Scholar 

  9. van’t Veer, L.J., Dai, H., Van De Vijver, M.J., He, Y.D., et al.: Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer. Nature 415, 530–536 (2002)

    Article  Google Scholar 

  10. Pillati, M., Viroli, C.: Supervised Locally Linear Embedding for Classification: an Application to Gene Expression Data Analysis. In: Proceedings of 29th Annual Conference of the of the German Classification Society (GfKl 2005), pp. 15–18 (2005)

    Google Scholar 

  11. Brunet, J.P., Tamayo, P., Golun, T.R., Mesirov, J.P.: Metagenes and Molecular Pattern Discovery Using Matrix Factorization. Proc. Natl. Acad. Sci. 101, 4164–4416 (2004)

    Article  Google Scholar 

  12. Pomeroy, S.L., Tamayo, P., et al.: Prediction of Central Nervous System Embryonal Tumour Outcome Based on Gene Expression. Nature 415, 436–442 (2002)

    Article  Google Scholar 

  13. Li, B., Huang, D.S.: Feature Extraction Using Constrained Maximum Variance Mapping. Pattern Recognition 41, 3287–3294 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, CH., Wu, FL., Li, B., Wang, J. (2009). Constrained Maximum Variance Mapping for Tumor Classification. In: Huang, DS., Jo, KH., Lee, HH., Kang, HJ., Bevilacqua, V. (eds) Emerging Intelligent Computing Technology and Applications. ICIC 2009. Lecture Notes in Computer Science, vol 5754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04070-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04070-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04069-6

  • Online ISBN: 978-3-642-04070-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics