Skip to main content

Intelligent Nonlinear Friction Compensation Using Friction Observer and Backstepping Control

  • Conference paper
Emerging Intelligent Computing Technology and Applications (ICIC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5754))

Included in the following conference series:

Abstract

In this article, a robust nonlinear friction control strategy is developed using friction observer and recurrent fuzzy neural network. The adaptive dynamic friction observer based on the LuGre friction model is proposed to estimates the friction parameters and a directly immeasurable friction state variable. A RFNN approximator and reconstructed error compensator is also designed to give additional robustness to the control system due to the presence of the friction model uncertainty. A proposed composite control scheme with basic basckstepping controller is applied to the position tracking control of the servo mechanical system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Canudas de Wit, C., Olsson, H., Astrom, K., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Automat. Control 40, 419–425 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Al-Bender, F., Lampaert, V., Swever, J.: The generalized Maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans. Automat. Control 50, 1883–1887 (2005)

    Article  MathSciNet  Google Scholar 

  3. Leu, Y.G., Lee, T.T., Wang, W.Y.: Online turning of fuzzy neural network for adaptive control of nonlinear dynamical systems. IEEE Trans. Syst., Man, Cybern. 27, 1034–1043 (1997)

    Article  Google Scholar 

  4. Lin, F.J., Hwang, W.J., Wai, R.J.: A supervisory fuzzy neural network control system for tracking periodic inputs. IEEE Trans. Fuzzy Syst. 7, 41–52 (1997)

    Google Scholar 

  5. Lin, F.J., Wai, R.J.: Robust recurrent fuzzy neural network control for linear synchronous motor drive system. Neurocomputing 50, 365–390 (2003)

    Article  MATH  Google Scholar 

  6. Lin, C.H.: Adaptive recurrent fuzzy neural network control for synchronous reluctance motor servo drive. IEE Proc. Electr. Power Appl. 151, 711–724 (2004)

    Article  Google Scholar 

  7. Narendra, K.S., Annaswamy, A.M.: Stable adaptive systems. Prentice-Hall, Englewood Cliffs (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, S.I., Jeong, C.S., Park, S.H., Jeong, Y.M., Lee, C.D., Yang, S.Y. (2009). Intelligent Nonlinear Friction Compensation Using Friction Observer and Backstepping Control. In: Huang, DS., Jo, KH., Lee, HH., Kang, HJ., Bevilacqua, V. (eds) Emerging Intelligent Computing Technology and Applications. ICIC 2009. Lecture Notes in Computer Science, vol 5754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04070-2_88

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04070-2_88

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04069-6

  • Online ISBN: 978-3-642-04070-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics