Skip to main content

On Computing the Hermite Form of a Matrix of Differential Polynomials

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5743))

Included in the following conference series:

  • 1110 Accesses

Abstract

Given a matrix over the ring of differential polynomials, we show how to compute the Hermite form H of A and a unimodular matrix U such that UA = H. The algorithm requires a polynomial number of operations in F in terms of n, , . When F = ℚ it require time polynomial in the bit-length of the rational coefficients as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abramov, S., Bronstein, M.: On solutions of linear functional systems. In: Proc. ACM International Symposium on Symbolic and Algebraic Computation, pp. 1–7 (2001)

    Google Scholar 

  • Beckermann, B., Cheng, H., Labahn, G.: Fraction-free row reduction of matrices of ore polynomials. Journal of Symbolic Computation 41(1), 513–543 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Bostan, A., Chyzak, F., Le Roux, N.: Products of ordinary differential operators by evaluation and interpolation. In: Proc. International Symposium on Symbolic and Algebraic Computation, pp. 23–30 (2008)

    Google Scholar 

  • Bronstein, M., Petkovšek, M.: On Ore rings, linear operators and factorisation. Programmirovanie 20, 27–45 (1994)

    MATH  Google Scholar 

  • Cheng, H.: Algorithms for Normal Forms for Matrices of Polynomials and Ore Polynomials. PhD thesis, University of Waterloo (2003), http://www.cs.uleth.ca/~cheng/publications.html

  • Davies, P., Cheng, H., Labahn, G.: Computing Popov form of general Ore polynomial matrices. In: Milestones in Computer Algebra, pp. 149–156 (2008)

    Google Scholar 

  • Dickson, L.E.: Algebras and their arithmetics. G.E. Stechert, New York (1923)

    MATH  Google Scholar 

  • Jean Dieudonné, M.: Les déterminants sur un corps non commutatif. Bulletin de la Société Mathématique de France 71, 27–45 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  • Dixon, J.D.: Exact solution of linear equations using p-adic expansions. Numer. Math. 40, 137–141 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  • von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  • Hermite, C.: Sur les fonctions de sept lettres. C.R. Acad. Sci. Paris 57, 750–757 (1863); OE uvres. Gauthier-Villars, Paris 2, 280–288 (1908)

    Google Scholar 

  • van der Hoeven, J.: FFT-like multiplication of linear differential operators. Journal of Symbolic Computation 33(1), 123–127 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Jacobson, N.: The Theory of Rings. American Math. Soc., New York (1943)

    Book  MATH  Google Scholar 

  • Kaltofen, E., Krishnamoorthy, M.S., Saunders, B.D.: Fast parallel computation of Hermite and Smith forms of polynomial matrices. SIAM J. Algebraic and Discrete Methods 8, 683–690 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Kannan, R.: Polynomial-time algorithms for solving systems of linear equations over polynomials. Theoretical Computer Science 39, 69–88 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Labhalla, S., Lombardi, H., Marlin, R.: Algorithmes de calcul de la réduction de Hermite d’une matrice à coefficients polynomiaux. Theoretical Computer Science 161(1–2), 69–92 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Z.: A subresultant theory for Ore polynomials with applications. In: Proc. International Symposium on Symbolic and Algebraic Computation, pp. 132–139 (1998)

    Google Scholar 

  • Li, Z., Nemes, I.: A modular algorithm for computing greatest common right divisors of ore polynomials. In: ISSAC 1997: Proceedings of the 1997 international symposium on Symbolic and algebraic computation. ACM, New York (1997)

    Google Scholar 

  • Middeke, J.: A polynomial-time algorithm for the jacobson form for matrices of differential operators. Technical Report 08-13, Research Institute for Symbolic Computation (RISC), Linz, Austria (2008)

    Google Scholar 

  • Mulders, T., Storjohann, A.: On lattice reduction for polynomial matrices. Journal of Symbolic Computation 35(4), 377–401 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Popov, V.: Invariant description of linear, time-invariant controllable systems. SIAM J. Control 10, 252–264 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, H.J.S.: On systems of linear indeterminate equations and congruences. Philos. Trans. Royal Soc. London 151, 293–326 (1861)

    Article  Google Scholar 

  • Storjohann, A.: Computation of Hermite and Smith normal forms of matrices. Master’s thesis, University of Waterloo (1994)

    Google Scholar 

  • Villard, G.: Generalized subresultants for computing the smith normal form of polynomial matrices. Journal of Symbolic Computation 20, 269–286 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Wedderburn, J.H.M.: Non-commutative domains of integrity. Journal für die reine und angewandte Mathematik 167, 129–141 (1932)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giesbrecht, M., Kim, M.S. (2009). On Computing the Hermite Form of a Matrix of Differential Polynomials. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2009. Lecture Notes in Computer Science, vol 5743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04103-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04103-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04102-0

  • Online ISBN: 978-3-642-04103-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics