Abstract
We describe a symbolic framework for treating linear boundary problems with a generic implementation in the Theorema system. For ordinary differential equations, the operations implemented include computing Green’s operators, composing boundary problems and integro-differential operators, and factoring boundary problems. Based on our factorization approach, we also present some first steps for symbolically computing Green’s operators of simple boundary problems for partial differential equations with constant coefficients. After summarizing the theoretical background on abstract boundary problems, we outline an algebraic structure for partial integro-differential operators. Finally, we describe the implementation in Theorema, which relies on functors for building up the computational domains, and we illustrate it with some sample computations including the unbounded wave equation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Stakgold, I.: Green’s functions and boundary value problems. John Wiley & Sons, New York (1979)
Rosenkranz, M., Buchberger, B., Engl, H.W.: Solving linear boundary value problems via non-commutative Gröbner bases. Appl. Anal. 82, 655–675 (2003)
Rosenkranz, M.: A new symbolic method for solving linear two-point boundary value problems on the level of operators. J. Symbolic Comput. 39, 171–199 (2005)
Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. J. Symbolic Comput. 43, 515–544 (2008)
Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring linear boundary problems. Ann. Mat. Pura Appl. 188(4), 123–151 (2009)
Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: Towards computer-aided mathematical theory exploration. J. Appl. Log. 4, 359–652 (2006)
Buchberger, B.: An algorithm for finding the bases elements of the residue class ring modulo a zero dimensional polynomial ideal (German). PhD thesis, Univ. of Innsbruck (1965); English translation J. Symbolic Comput. 41(3-4), 475–511 (2006)
Buchberger, B.: Introduction to Gröbner bases. In: Buchberger, B., Winkler, F. (eds.) Gröbner bases and applications, Cambridge Univ. Press, Cambridge (1998)
Mora, T.: An introduction to commutative and noncommutative Gröbner bases. Theoret. Comput. Sci. 134, 131–173 (1994)
Köthe, G.: Topological vector spaces, vol. I. Springer, New York (1969)
Brown, R.C., Krall, A.M.: Ordinary differential operators under Stieltjes boundary conditions. Trans. Amer. Math. Soc. 198, 73–92 (1974)
Kamke, E.: Differentialgleichungen. Lösungsmethoden und Lösungen. Teil I: Gewöhnliche Differentialgleichungen. Akademische Verlagsgesellschaft, Leipzig (1967)
Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York (1955)
Rosenkranz, M., Regensburger, G.: Integro-differential polynomials and operators. In: Jeffrey, D. (ed.) Proceedings of ISSAC 2008, pp. 261–268. ACM, New York (2008)
van der Put, M., Singer, M.F.: Galois theory of linear differential equations. Springer, Berlin (2003)
Schwarz, F.: A factorization algorithm for linear ordinary differential equations. In: Proceedings of ISSAC 1989, pp. 17–25. ACM, New York (1989)
Tsarev, S.P.: An algorithm for complete enumeration of all factorizations of a linear ordinary differential operator. In: Proceedings of ISSAC 1996, pp. 226–231. ACM, New York (1996)
Grigoriev, D., Schwarz, F.: Loewy- and primary decompositions of D-modules. Adv. in Appl. Math. 38, 526–541 (2007)
Tsarev, S.P.: Factorization of linear partial differential operators and Darboux integrability of nonlinear PDEs. SIGSAM Bull. 32, 21–28 (1998)
Regensburger, G., Rosenkranz, M., Middeke, J.: A skew polynomial approach to integro-differential operators. In: Proceedings of ISSAC 2009. ACM, New York (to appear, 2009)
Cohn, P.M.: Further algebra and applications. Springer, London (2003)
Buchberger, B., Regensburger, G., Rosenkranz, M., Tec, L.: General polynomial reduction with Theorema functors: Applications to integro-differential operators and polynomials. ACM Commun. Comput. Algebra 42, 135–137 (2008)
Buchberger, B.: Groebner rings and modules. In: Maruster, S., Buchberger, B., Negru, V., Jebelean, T. (eds.) Proceedings of SYNASC 2001, pp. 22–25 (2001)
Buchberger, B.: Groebner bases in Theorema using functors. In: Faugere, J., Wang, D. (eds.) Proceedings of SCC 2008, pp. 1–15. LMIB Beihang University Press (2008)
Windsteiger, W.: Building up hierarchical mathematical domains using functors in Theorema. Electr. Notes Theor. Comput. Sci. 23, 401–419 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rosenkranz, M., Regensburger, G., Tec, L., Buchberger, B. (2009). A Symbolic Framework for Operations on Linear Boundary Problems. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2009. Lecture Notes in Computer Science, vol 5743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04103-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-04103-7_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04102-0
Online ISBN: 978-3-642-04103-7
eBook Packages: Computer ScienceComputer Science (R0)