Skip to main content

Efficient MAP Inference for Statistical Relational Models through Hybrid Metaheuristics

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5722))

Included in the following conference series:

  • 1263 Accesses

Abstract

Statistical Relational Models are state-of-the-art representation formalisms at the intersection of logical and statistical machine learning. One of the most promising models is Markov Logic (ML) which combines Markov networks (MNs) and first-order logic by attaching weights to first-order formulas and using these as templates for features of MNs. MAP inference in ML is the task of finding the most likely state of a set of output variables given the state of the input variables and this problem is NP-hard. In this paper we present an algorithm for this inference task based on the Iterated Local Search (ILS) and Robust Tabu Search (RoTS) metaheuristics. The algorithm performs a biased sampling of the set of local optima by using RoTS as a local search procedure and repetitively jumping in the search space through a perturbation operator, focusing the search not on the full space of solutions but on a smaller subspace defined by the solutions that are locally optimal for the optimization engine. We show through extensive experiments in real-world domains that it improves over the state-of-the-art algorithm in terms of solution quality and inference time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bacchus, F.: Representing and Reasoning with Probabilistic Knowledge. MIT Press, Cambridge (1990)

    Google Scholar 

  2. Halpern, J.: An analysis of first-order logics of probability. Artificial Intelligence 46, 311–350 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Nilsson, N.: Probabilistic logic. Artificial Intelligence 28, 71–87 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wellman, M., Breese, J.S., Goldman, R.P.: From knowledge bases to decision models. Knowledge Engineering Review 7 (1992)

    Google Scholar 

  5. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT, Cambridge (2007)

    MATH  Google Scholar 

  6. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–236 (2006)

    Article  Google Scholar 

  7. Singla, P., Domingos, P.: Discriminative training of markov logic networks. In: Proc. 20th Nat’l Conf. on AI (AAAI), pp. 868–873. AAAI Press, Menlo Park (2005)

    Google Scholar 

  8. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. In: Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, pp. 521–532. American Mathematical Society, Providence (1996)

    Google Scholar 

  9. Loureno, H., Martin, O., Stutzle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 321–353. Kluwer, USA (2002)

    Google Scholar 

  10. Taillard, E.: Robust taboo search for the quadratic assignment problem. Parallel Computing 17, 443–455 (1991)

    Article  MathSciNet  Google Scholar 

  11. Della Pietra, S., Pietra, V.D., Laferty, J.: Inducing features of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 380–392 (1997)

    Article  Google Scholar 

  12. Hoos, H.H., Stutzle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  13. Park, J.D.: Using weighted max-sat engines to solve mpe. In: Proc. of AAAI, pp. 682–687 (2005)

    Google Scholar 

  14. Kautz, H., Selman, B., Jiang, Y.: A general stochastic approach to solving problems with hard and soft constraints. In: The Satisfiability Problem: Theory and Applications. AMS (1997)

    Google Scholar 

  15. Glover, F., Laguna, M.: Tabu Search. Kluwer, Boston (1997)

    Book  MATH  Google Scholar 

  16. Smyth, K., Hoos, H., Stützle, T.: Iterated robust tabu search for max-sat. In: Canadian Conference on AI, pp. 129–144 (2003)

    Google Scholar 

  17. Lowd, D., Domingos, P.: Efficient weight learning for markov logic networks. In: Proc. of the 11th PKDD, pp. 200–211. Springer, Heidelberg (2007)

    Google Scholar 

  18. Kok, S., Singla, P., Richardson, M., Domingos, P.: The alchemy system for statistical relational ai. Technical report, Dep. CSE-UW, Seattle, WA (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Biba, M., Ferilli, S., Esposito, F. (2009). Efficient MAP Inference for Statistical Relational Models through Hybrid Metaheuristics. In: Rauch, J., RaÅ›, Z.W., Berka, P., Elomaa, T. (eds) Foundations of Intelligent Systems. ISMIS 2009. Lecture Notes in Computer Science(), vol 5722. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04125-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04125-9_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04124-2

  • Online ISBN: 978-3-642-04125-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics