Skip to main content

Narrow-Shallow-Low-Light Trees with and without Steiner Points

  • Conference paper
Algorithms - ESA 2009 (ESA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5757))

Included in the following conference series:

  • 1722 Accesses

Abstract

We show that for every set \(\mathcal S\) of n points in the plane and a designated point \(rt \in \mathcal S\), there exists a tree T that has small maximum degree, depth and weight. Moreover, for every point \(v \in \mathcal S\), the distance between rt and v in T is within a factor of (1 + ε) close to their Euclidean distance ||rt,v||. We call these trees narrow-shallow-low-light (NSLLTs). We demonstrate that our construction achieves optimal (up to constant factors) tradeoffs between all parameters of NSLLTs. Our construction extends to point sets in \(\mathbb R^d\), for an arbitrarily large constant d. The running time of our construction is O(n ·logn).

We also study this problem in general metric spaces, and show that NSLLTs with small maximum degree, depth and weight can always be constructed if one is willing to compromise the root-distortion. On the other hand, we show that the increased root-distortion is inevitable, even if the point set \(\mathcal S\) resides in a Euclidean space of dimension Θ(logn).

On the bright side, we show that if one is allowed to use Steiner points then it is possible to achieve root-distortion (1 + ε) together with small maximum degree, depth and weight for general metric spaces.

Finally, we establish some lower bounds on the power of Steiner points in the context of Euclidean spanning trees and spanners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpert, C.J., Hu, T.C., Huang, J.H., Kahng, A.B., Karger, D.: Prim-Dijkstra tradeoffs for improved performance-driven routing tree design. IEEE Trans. on CAD of Integrated Circuits and Systems 14(7), 890–896 (1995)

    Article  Google Scholar 

  2. Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.H.M.: Euclidean spanners: short, thin, and lanky. In: 27th ACM Symposium on Theory of Computing, pp. 489–498. ACM Press, New York (1995)

    Google Scholar 

  3. Awerbuch, B., Baratz, A., Peleg, D.: Cost-sensitive analysis of communication protocols. In: 9th ACM Symposium on Principles of Distributed Computing, pp. 177–187. ACM Press, New York (1990)

    Google Scholar 

  4. Awerbuch, B., Baratz, A., Peleg, D.: Efficient Broadcast and Light-Weight Spanners (manuscript) (1991)

    Google Scholar 

  5. Chan, T.M.: Euclidean Bounded-Degree Spanning Tree Ratios. Discrete & Computational Geometry 32(2), 177–194 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cong, J., Kahng, A.B., Robins, G., Sarrafzadeh, M., Wong, C.K.: Performance-Driven Global Routing for Cell Based ICs. In: 9th IEEE International Conference on Computer Design: VLSI in Computer & Processors, pp. 170–173. IEEE press, New York (1991)

    Google Scholar 

  7. Cong, J., Kahng, A.B., Robins, G., Sarrafzadeh, M., Wong, C.K.: Provably good performance-driven global routing. IEEE Trans. on CAD of Integrated Circuits and Sys. 11(6), 739–752 (1992)

    Article  Google Scholar 

  8. Dinitz, Y., Elkin, M., Solomon, S.: Shallow-Low-Light Trees, and Tight Lower Bounds for Euclidean Spanners. In: 49th IEEE Symposium on Foundations of Computer Science, pp. 519–528. EEE Press, New York (2008)

    Google Scholar 

  9. Eppstein, D.: Spanning trees and spanners. Technical report 96–16, Dept. of Information and Computer-Science, University of California, Irvine (1996)

    Google Scholar 

  10. Farshi, M., Gudmundsson, J.: Experimental Study of Geometric t-Spanners: A Running Time Comparison. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 270–284. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Fekete, S.P., Khuller, S., Klemmstein, M., Raghavachari, B., Young, N.E.: A Network-Flow Technique for Finding Low-Weight Bounded-Degree Spanning Trees. J. Algorithms 24(2), 310–324 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grünewald, M., Lukovszki, T., Schindelhauer, C., Volbert, K.: Distributed Maintenance of Resource Efficient Wireless Network Topologies. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 935–946. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Gupta, A.: Steiner points in tree metrics don’t (really) help. In: 12th ACM-SIAM Symposium on Discrete Algorithms, pp. 220–227. SIAM Press, Philadelphia (2001)

    Google Scholar 

  14. Khuller, S., Raghavachari, B., Young, N.E.: Balancing Minimum Spanning and Shortest Path Trees. In: 4th ACM-SIAM Symposium on Discrete Algorithms, pp. 243–250. ACM Press, New York (1993)

    Google Scholar 

  15. Lukovszki, T.: New Results on Fault Tolerant Geometric Spanners. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 193–204. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Lukovszki, T.: New Results on Geometric Spanners and Their Applications. Ph.D thesis, Dept. of Computer-Science, University of Paderborn, Paderborn, Germany (1999)

    Google Scholar 

  17. Lukovszki, T., Schindelhauer, C., Volbert, K.: Resource Efficient Maintenance of Wireless Network Topologies. J. UCS 12(9), 1292–1311 (2006)

    MATH  Google Scholar 

  18. Monma, C.L., Suri, S.: Transitions in Geometric Minimum Spanning Trees. Discrete & Computational Geometry 8, 265–293 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  20. Papadimitriou, C.H., Vazirani, U.V.: On Two Geometric Problems Related to the Traveling Salesman Problem. J. Algorithms 5(2), 231–246 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ruppert, J., Seidel, R.: Approximating the d-dimensional complete Euclidean graph. In: 3rd Canadian Conference on Computational Geometry, pp. 207–210 (1991)

    Google Scholar 

  22. Salowe, J.S., Richards, D.S., Wrege, D.E.: Mixed spanning trees: a technique for performance-driven routing. In: 3rd ACM Great Lakes symposium on VLSI, pp. 62–66. ACM Press, New York (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elkin, M., Solomon, S. (2009). Narrow-Shallow-Low-Light Trees with and without Steiner Points. In: Fiat, A., Sanders, P. (eds) Algorithms - ESA 2009. ESA 2009. Lecture Notes in Computer Science, vol 5757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04128-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04128-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04127-3

  • Online ISBN: 978-3-642-04128-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics