Abstract
The interval graph for a set of intervals on a line consists of one vertex for each interval, and an edge for each intersecting pair of intervals. A probe interval graph is a variant that is motivated by an application to genomics, where the intervals are partitioned into two sets: probes and non-probes. The graph has an edge between two vertices if they intersect and at least one of them is a probe. We give a linear-time algorithm for determining whether a given graph and partition of vertices into probes and non-probes is a probe interval graph. If it is, we give a layout of intervals that proves that it is. In contrast to previous algorithms for the problem, our algorithm can determine whether the layout is uniquely constrained. As part of the algorithm we solve the consecutive-ones probe matrix problem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benzer, S.: On the topology of the genetic fine structure. Proc. Nat. Acad. Sci. U.S.A. 45, 1607–1620 (1959)
Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)
Chandler, D.B., Guo, J., Kloks, T., Niedermeier, R.: Probe matrix problems: Totally balanced matrices. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 368–377. Springer, Heidelberg (2007)
Chang, G.J., Kloks, T., Liu, J., Peng, S.-L.: The PIGSs full monty - a floor show of minimal separators. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 521–532. Springer, Heidelberg (2005)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. McGraw Hill, Boston (2001)
Fulkerson, D.R., Gross, O.: Incidence matrices and interval graphs. Pacific J. Math. 15, 835–855 (1965)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
Golumbic, M.C.: Matrix sandwich problems. Linear Algebra and Applications 277, 239–251 (1998)
Golumbic, M.C., Trenk, A.N.: Tolerance Graphs. Cambridge studies in advanced mathematics 89, New York (2004)
Johnson, J.L., Spinrad, J.P.: A polynomial time recognition algorithm for probe interval graphs. In: SODA 2001, pp. 477–486. Association for Computing Machinery, New York (2001)
McConnell, R.M., de Montgolfier, F.: Algebraic operations on PQ trees and modular decomposition trees. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 421–432. Springer, Heidelberg (2005)
McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37, 93–147 (2003)
McConnell, R.M., Spinrad, J.P.: Construction of probe interval models. In: SODA 2002, pp. 866–875. Association for Computing Machinery, New York (2002)
McMorris, F.R., Wang, C., Zhang, P.: On probe interval graphs. Discrete Applied Mathematics 88, 315–324 (1998)
Rose, D., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)
Uehara, R.: Canonical data structure for interval probe graphs. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 859–870. Springer, Heidelberg (2004)
Zhang, P.: United states patent 5667970: Method of mapping DNA fragments (July 3, 2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
McConnell, R.M., Nussbaum, Y. (2009). Linear-Time Recognition of Probe Interval Graphs. In: Fiat, A., Sanders, P. (eds) Algorithms - ESA 2009. ESA 2009. Lecture Notes in Computer Science, vol 5757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04128-0_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-04128-0_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04127-3
Online ISBN: 978-3-642-04128-0
eBook Packages: Computer ScienceComputer Science (R0)