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Abstract

Dial-a-Ride problems consist of a set V of n vertices in a metric space (denoting travel time
between vertices) and a set of m objects represented as source-destination pairs {(si, ti)}mi=1, where
each object requires to be moved from its source to destination vertex. In the multi-vehicle Dial-a-
Ride problem, there are q vehicles each having capacity k and where each vehicle j ∈ [q] has its own
depot-vertex rj ∈ V . A feasible schedule consists of a capacitated route for each vehicle (where
vehicle j originates and ends at its depot rj) that together move all objects from their sources to
destinations. The objective is to find a feasible schedule that minimizes the maximum completion
time (i.e. makespan) of vehicles, where the completion time of vehicle j is the time when it returns
to its depot rj at the end of its route. We study the preemptive version of multi-vehicle Dial-a-Ride,
where an object may be left at intermediate vertices and transported by more than one vehicle, while
being moved from source to destination.

Our main results are an O(log3 n)-approximation algorithm for preemptive multi-vehicle Dial-
a-Ride, and an improved O(log t)-approximation for its special case when there is no capacity con-
straint (here t ≤ n is the number of distinct depot-vertices). There is an Ω(log1/4−ε n) hardness
of approximation known even for single vehicle capacitated Dial-a-Ride [17]. For uncapacitated
multi-vehicle Dial-a-Ride, we show that there are instances where natural lower bounds (used in our
algorithm) are Ω̃(log t) factor away from the optimum.

We also consider the special class of metrics induced by graphs excluding any fixed minor (eg.
planar metrics). In this case, we obtain improved guarantees of O(log2 n) for capacitated multi-
vehicle Dial-a-Ride, and O(1) for the uncapacitated problem.

1 Introduction

The multi-vehicle Dial-a-Ride problem involves routing a set of m objects from their sources to respec-
tive destinations using a set of q vehicles starting at t distinct depot vertices in an n-vertex metric. Each
vehicle has a capacity k which is the maximum number of objects it can carry at any time. Two versions
arise based on whether or not the vehicle can use any vertex in the metric as a preemption (a.k.a. trans-
shipment) point - we study the less-examined preemptive version in this paper. The objective in these
problems is either the total completion time or the makespan (maximum completion time) over the q
vehicles, and we study the more interesting makespan version of the problem. Thus this paper studies
the preemptive, capacitated, minimum makespan, multi-vehicle Dial-a-Ride (mDaR) problem.

While the multiple qualifications may make the problem appear contrived, this is exactly the problem
that models courier or mail delivery over a day from several city depots: preemption is cheap and useful
for packages, trucks are capacitated and the makespan reflects the daily working time limit for each
truck. Despite its ubiquity, this problem has not been as well studied as other Dial-a-Ride versions.
One reason from the empirical side is the difficulty in handling the possibility of preemptions in a
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clean mathematical programming model. On the theoretical side which is the focus of this paper, the
difficulty of using preemption in a meaningful way in an approximation algorithm persists. It is further
compounded by the hardness of the makespan objective.

The requirement in preemptive Dial-a-Ride, that preemptions are allowed at all vertices, may seem
unrealistic. In practice, a subset P of the vertex-set V might represent the vertices where preemp-
tion is permitted: the two extremes of this general problem are non-preemptive Dial-a-Ride (P = ∅)
and preemptive Dial-a-Ride (P = V ). However preemptive Dial-a-Ride is more generally applica-
ble: specifically in situations where the preemption-points P form a net of the underlying metric (i.e.
every vertex in V has a nearby preemption-point). In particular, approximation algorithms for preemp-
tive Dial-a-Ride imply good approximations even in this general setting, wherein the precise guarantee
depends on how well P covers V .

We also note that though our model allows any number of preemptions and preemptions at all ver-
tices, our algorithms do not use this possibility to its full extent. Our algorithm for the capacitated case
preempts each object at most once and our algorithm for the uncapacitated case only preempts objects
at depot vertices (and at most O(log t) times).

The preemptive Dial-a-Ride problem has been considered earlier with a single vehicle, for which
an O(log n) approximation [8] and an Ω(log1/4−ε n) hardness of approximation (for any constant ε >
0) [17] are known. Note that the completion time and makespan objectives coincide for this case.

Moving to multiple vehicles, the total completion time objective admits a straightforward O(log n)
approximation along the lines of the single vehicle problem [8]: Using the FRT tree embedding [15], one
can reduce to tree-metrics at the loss of an expectedO(log n) factor, and there is a simple constant factor
approximation for this problem on trees. The maximum completion time or makespan objective, which
we consider in this paper turns out to be considerably harder. Due to non-linearity of the makespan
objective, the above reduction to tree-metrics does not hold. Furthermore, the makespan objective does
not appear easy to solve even on trees.

Unlike in the single-vehicle case, note that an object in multi-vehicle Dial-a-Ride may be transported
by several vehicles one after the other. Hence it is important for the vehicle routes to be coordinated so
that the objects trace valid paths from respective sources to destinations. For example, a vehicle may
have to wait at a vertex for other vehicles carrying common objects to arrive. The multi-vehicle Dial-a-
Ride problem captures aspects of both machine scheduling and network design problems.

1.1 Results, Techniques and Paper Outline

Uncapacitated mDaR. We first consider the special case of multi-vehicle Dial-a-Ride where the vehi-
cles have no capacity constraints (i.e. k ≥ m). This problem is interesting in itself, and serves as a good
starting point before we present the algorithm for the general case. The uncapacitated mDaR problem
itself highlights differences from the single vehicle case: For example, in single vehicle Dial-a-Ride,
preemption plays no role in the absence of capacity constraints; whereas in the multi-vehicle case, an
optimal non-preemptive schedule may take Ω(

√
q) longer than the optimal preemptive schedule (see

Section 2). Our first main result is the following:

Theorem 1 There is an O(log t)-approximation algorithm for uncapacitated preemptive mDaR. Addi-
tionally, the schedule preempts objects only at depot vertices.

The above algorithm has two main steps: the first one (in Subsection 2.1) reduces the instance at a
constant factor loss in the performance guarantee to one in which all demands are between depots (a
“depot-demand” instance). In the second step (Subsection 2.2), we use a sparse spanner on the demand
graph to construct routes for moving objects across depots.

We also construct instances of uncapacitated mDaR where the optimal value is Ω(log t/ log log t)
times all our lower bounds for this problem (Subsection 2.3). This suggests that stronger lower bounds
are needed to obtain a better approximation ratio than what our approach provides.
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We then consider the special class of metrics induced by graphs excluding some fixed minor (such
as planar or bounded-genus graphs), and obtain the following improved guarantee in Subsection 2.4.

Theorem 2 There is anO(1)-approximation algorithm for uncapacitated preemptive mDaR on metrics
induced by graphs that exclude any fixed minor.

Again the resulting schedule only preempts objects at depot-vertices. Furthermore, each object is pre-
empted at most thrice; whereas the algorithm in Theorem 1 might preempt each object O(log t) times.
The algorithm in Theorem 2 has the same high-level approach outlined for Theorem 1: the difference is
in the second step, where we use a stronger notion of sparse covers in such metrics (which follows from
the KPR decomposition theorem [22]), to construct routes for moving objects across depots.

Capacitated mDaR. In Section 3, we study the capacitated multi-vehicle Dial-a-Ride problem, and
obtain our second main result. Recall that there is an Ω(log1/4−ε n) hardness of approximation for even
single vehicle Dial-a-Ride [17].

Theorem 3 There is a randomized O(log3 n)-approximation algorithm for preemptive mDaR. Addi-
tionally, the schedule preempts each object at most once.

This algorithm is considerably more complex than the one for the uncapacitated special case, and is
the main technical contribution of this paper. It has four key steps: (1) We preprocess the input so that
demand points that are sufficiently far away from each other can be essentially decomposed into separate
instances for the algorithm to handle independently. (2) We then solve a single-vehicle instance of the
problem that obeys some additional bounded-delay property (Theorem 9) that we prove; This property
combines ideas from algorithms for light approximate shortest path trees [21] and capacitated vehicle
routing [19]. The bounded-delay property is useful in randomly partitioning the single vehicle solution
among the q vehicles available to share this load. This random partitioning scheme is reminiscent of
the work of Hochbaum-Maass [20], Baker [3] and Klein-Plotkin-Rao [22], in trying to average out
the effect of the cutting in the objective function. (3) The partitioned segments of the single vehicle
tour are assigned to the available vehicles; However, to check if this assignment is feasible we solve a
matching problem that identifies cases when this load assignment must be rebalanced. This is perhaps
the most interesting step in the algorithm since it identifies stronger lower bounds for subproblems
where the current load assignment is not balanced. (4) We finish up by recursing on the load rebalanced
subproblem; An interesting feature of the recursion is that the fraction of demands that are processed
recursively is not a fixed value (as is more common in such recursive algorithms) but is a carefully
chosen function of the number of vehicles on which these demands have to be served.

We prove the new bounded-delay property of single-vehicle Dial-a-Ride in Subsection 3.1. Then we
present the algorithm for Theorem 3 in Subsection 3.2 and establish an O(log2m log n)-approximation
bound. Using some additional preprocessing, we show in Subsection 3.3 how to remove the dependence
on m (number of objects) to obtain the final O(log3 n) approximation ratio.

When the underlying metric is induced by graphs excluding a fixed minor, we can establish a stronger
bounded-delay property in step (2) of the above framework. The main idea here is the construction of
well-separated covers in such metrics, which we show can be obtained using the KPR decomposi-
tion [22]. This leads to the following improved guarantee, proved in Subsection 3.4.

Theorem 4 There is an O(log2 n)-approximation algorithm for preemptive mDaR on metrics induced
by graphs excluding any fixed minor.

1.2 Related Work

Dial-a-Ride problems form an interesting subclass of Vehicle Routing Problems that are well studied
in the operations research literature. Paepe et al. [13] provide a classification of Dial-a-Ride problems
using a notation similar to that for scheduling and queuing problems: preemption is one aspect in this
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classification. Savelsberg and Sol [27] and Cordeau and Laporte [12] survey several variants of non-
preemptive Dial-a-Ride problems that have been studied in the literature. Most Dial-a-Ride problems
arising in practice involve making routing decisions for multiple vehicles.

Dial-a-Ride problems with transshipment (the preemptive version) have been studied in [24, 25, 26].
These papers consider a more general model where preemption is allowed only at a specified subset of
vertices. Our model (and that of [8]) is the special case when every vertex can serve as a preemption
point. It is clear that preemption only reduces the cost of serving demands: Nakao and Nagamochi [26]
studied the maximum decrease in the optimal cost upon introducing one preemption point. [24, 25] also
model time-windows on the demands, and study heuristics and a column-generation based approach;
they also describe applications (eg. courier service) that allow for preemptions.

For single vehicle Dial-a-Ride, the best known approximation guarantee for the preemptive version
is O(log n) (Charikar and Raghavachari [8]), and an Ω(log1/4−ε n) hardness of approximation (for any
constant ε > 0) is shown in Gørtz [17]. The non-preemptive version appears much harder and the
best known approximation ratio is min{

√
k log n,

√
n log2 n} (Charikar and Raghavachari [8], Gupta et

al. [18]); however to the best of our knowledge, APX-hardness is the best lower bound. There are known
instances of single vehicle Dial-a-Ride where the ratio between optimal non-preemptive and preemptive
tours is Ω(

√
n) in general metrics [8], and Ω̃(n1/8) in the Euclidean plane [18]. A 1.8-approximation is

known for the k = 1 special case of single vehicle Dial-a-Ride (a.k.a. stacker-crane problem) [16].
Charikar et al. [7] studied the related k-delivery TSP problem, which involves transporting a number

of identical objects from supply to demand vertices, using a single capacity k vehicle. The key difference
from Dial-a-Ride is that an object can be moved from any supply vertex to any demand vertex. [7] gave
an approximation algorithm for k-delivery TSP that outputs a non-preemptive tour of length at most five
times an optimal preemptive tour. They also showed that for any k-delivery TSP instance, the optimal
non-preemptive tour is at most four times the optimal preemptive tour.

The truck and trailer routing problem [5, 28] is another problem where preemption plays a crucial
role. Here a number of capacitated trucks and trailers are used to deliver all objects. Some customers
are only accessible without the trailer. The trailers can be parked at any point accessible with a trailer
and it is possible to shift demand loads between the truck and the trailer at the parking places. The
papers [5, 28] present heuristics for this problem.

Single vehicle preemptive Dial-a-Ride is closely related to the uniform buy-at-bulk problem (with
cost function dxk e where k is the vehicle capacity). Such a connection was formally used in Gørtz [17] to
establish the hardness of approximation for the single vehicle problem. Approximation algorithms for
several buy-at-bulk variants have been studied recently, eg. non-uniform buy-at-bulk [6, 9], buy-at-bulk
with node-costs [10] and buy-at-bulk with protection [2]; poly-logarithmic approximation guarantees are
known for all these problems. However the techniques required to solve the multi-vehicle Dial-a-Ride
problem appear quite different from these buy-at-bulk results.

The uncapacitated mDaR problem generalizes the nurse-station-location problem that was studied
in Even et al. [14] (where a 4-approximation algorithm was given). In fact we also use this algorithm as a
subroutine for uncapacitated mDaR. Nurse-station-location is the special case of uncapacitated mDaR
when each source-destination pair coincides on a single vertex. In this paper, we handle not only the
case with arbitrary pairs (uncapacitated mDaR), but also the more general problem (capacitated mDaR)
with finite capacity restriction.

1.3 Problem Definition and Preliminaries

We represent a finite metric as (V, d) where V is the set of vertices and d is a symmetric distance function
satisfying the triangle inequality. For subsets A,B ⊆ V we denote by d(A,B) the minimum distance
between a vertex in A and another in B, so d(A,B) = min{d(u, v) | u ∈ A, v ∈ B}. For a subset
E ⊆

(
V
2

)
of edges, d(E) :=

∑
e∈E de denotes the total length of edges in E.

The multi-vehicle Dial-a-Ride problem (mDaR) consists of an n-vertex metric (V, d), m objects
specified as source-destination pairs {si, ti}mi=1, q vehicles having respective depot-vertices {rj}qj=1,
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and a common vehicle capacity k. A feasible schedule is a set of q routes, one for each vehicle (where
the route for vehicle j ∈ [q] starts and ends at rj), such that no vehicle carries more than k objects
at any time and each object is moved from its source to destination. The completion time Cj of any
vehicle j ∈ [q] is the time when vehicle j returns to its depot rj at the end of its route (the schedule is
assumed to start at time 0). The objective in mDaR is to minimize the makespan, i.e., min maxj∈[q]Cj .
We denote by S := {si | i ∈ [m]} the set of sources, T := {ti | i ∈ [m]} the set of destinations,
R := {rj | j ∈ [q]} the set of distinct depot-vertices, and t := |R| the number of distinct depots. In this
paper, we only consider the preemptive version, where objects may be left at intermediate vertices while
being moved from source to destination.

Single vehicle Dial-a-Ride. The following are lower bounds for the single vehicle problem: the
minimum length TSP tour on the depot and all source/destination vertices (Steiner lower bound), and∑m

i=1 d(si,ti)
k (flow lower bound). Charikar and Raghavachari [8] gave an O(log n)-approximation algo-

rithm for this problem based on the above lower bounds. A feasible solution to preemptive Dial-a-Ride
is said to be 1-preemptive if every object is preempted at most once while being moved from its source
to destination. Gupta et al. [18] showed that the single vehicle preemptive Dial-a-Ride problem always
has a 1-preemptive tour of length O(log2 n) times the Steiner and flow lower-bounds.

Lower bounds for mDaR. The quantity
∑m

i=1 d(si,ti)
qk is a lower bound similar to the flow bound for

single vehicle Dial-a-Ride. Analogous to the Steiner lower bound above, is the optimal value of an in-
duced nurse-station-location instance. In the nurse-station-location problem [14], we are given a metric
(V, d), a set T of terminals and a multi-set {rj}qj=1 of depot-vertices; the goal is to find a collection
{Fj}qj=1 of trees that collectively contain all terminals T such that each tree Fj is rooted at vertex rj and
maxqj=1 d(Fj) is minimized. Even et al. [14] gave a 4-approximation algorithm for this problem. The
optimal value of the nurse-station-location instance with depots {rj}qj=1 (depots of vehicles in mDaR)
and terminals T = S ∪ T is a lower bound for mDaR. The following are some lower bounds implied
by nurse-station-location: (a) 1/q times the minimum length forest that connects every vertex in S ∪ T
to some depot vertex, (b) maxi∈[m] d(R, si), and (c) maxi∈[m] d(R, ti). Finally, it is easy to see that
maxi∈[m] d(si, ti) is also a lower bound for mDaR.

We note that our approximation bounds for uncapacitated mDaR are relative to the above lower
bounds. However the algorithm for capacitated mDaR relies additionally on stronger lower bounds
derived from suitable subproblems.

2 Uncapacitated Multi-Vehicle Dial-a-Ride

In this section we study the uncapacitated special case of mDaR, where vehicles have no capacity con-
straints (i.e. capacity k ≥ m). We give an algorithm that achieves an O(log t) approximation ratio for
this problem (recall t ≤ n is the number of distinct depots). Unlike in the single vehicle case, preemptive
and non-preemptive versions of mDaR are very different even without capacity constraints.

Preemption gap in Uncapacitated mDaR. Consider an instance of uncapacitated mDaR where the
metric is induced by an unweighted star with q leaves (where q is number of vehicles), all q vehicles
have the center vertex as depot, and there is a demand between every pair of leaf-vertices. A preemptive
schedule having makespan 4 is as follows: each vehicle j ∈ [q] visits leaf j and brings all demands
with source j to the root, then each vehicle j visits its corresponding leaf again, this time delivering all
demands with destination j. On the other hand, in any non-preemptive schedule, one of the q vehicles
completely serves at least q − 1 demands (since there are q(q − 1) demands in all). The minimum
length of any tour containing the end points of q demands is Ω(

√
q), which is also a lower bound on the

optimal non-preemptive makespan. Thus there is an Ω(
√
q) factor gap between optimal preemptive and
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non-preemptive tours. This is in contrast to the uncapacitated single vehicle case, where it is easy to see
that the optimal preemptive and non-preemptive tours coincide.

The algorithm for uncapacitated mDaR proceeds in two stages. Given any instance, it is first reduced
(at the loss of a constant factor) to a depot-demand instance, where all demands are between depot
vertices (Subsection 2.1). This reduction uses the nurse-station-location algorithm from Even et al. [14].
Then the depot-demand instance is solved using an O(log t)-approximation algorithm (Subsection 2.2);
this is the key step in the algorithm, and is based on a sparse-spanner on the demand graph.

2.1 Reduction to Depot-demand Instances

We define depot-demand instances as those instances of uncapacitated mDaR where all demands are
between depot vertices. Given any instance I of uncapacitated mDaR, the algorithm UncapMulti (Fig-
ure 1) reduces I to a depot-demand instance. We now argue that the reduction in UncapMulti only loses
a constant approximation factor. Let B denote the optimal makespan of instance I. Since the optimal
value of the nurse-station-location instance solved in the first step of UncapMulti is a lower bound for
I, we have maxqj=1 d(Fj) ≤ 4B.

Input: instance I of uncapacitated mDaR.

• Solve the nurse-station-location instance with depots {rj}qj=1 and all sources/destinations
S ∪ T as terminals, using the 4-approximation algorithm [14]. Let {Fj}qj=1 be the resulting
trees covering S ∪ T such that each tree Fj is rooted at depot rj .

• Define a depot-demand instance J of uncapacitated mDaR on the same metric and set of
vehicles, where the demands are {(rj , rl) | si ∈ Fj & ti ∈ Fl, 1 ≤ i ≤ m}. For any object
i ∈ [m] let the source depot be the depot rj for which si ∈ Fj and the destination depot be
the depot rl for which ti ∈ Fl.

• Output the following schedule for I:

1. Each vehicle j ∈ [q] traverses tree Fj by an Euler tour, picks up all objects from sources
in Fj and brings them to their source-depot rj .

2. Vehicles implement a schedule for depot-demand instance J , and all objects are moved
from their source-depot to destination-depot (using the algorithm in Section 2.2).

3. Each vehicle j ∈ [q] traverses tree Fj by an Euler tour, picks up all objects having
destination-depot rj and brings them to their destinations in Fj .

Figure 1: Algorithm UncapMulti for uncapacitated mDaR.

Claim 5 The optimal makespan for the depot-demand instance J is at most 17B.

Proof: Consider a feasible schedule for J involving three rounds: (1) each vehicle traverses (by means
of an Euler tour) its corresponding tree in {Fj}qj=1 and moves each object i from its source-depot (the
source in instance J ) to si (source in original instance I); (2) each vehicle follows the optimal schedule
for I and moves each object i from si to ti (destination in I); (3) each vehicle traverses its corresponding
tree in {Fj}qj=1 and moves each object i from ti to its destination-depot (the destination in J ). Clearly
this is a feasible schedule for J . From the observation on the nurse-station-location instance, the time
taken in each of the first and third rounds is at most 8B. Furthermore, the time taken in the second round
is the optimal makespan of I which is B. This proves the claim.

Assuming a feasible schedule for J , it is clear that the schedule returned by UncapMulti is feasible
for the original instance I. The first and third rounds in I’s schedule require at most 8B time each.

6



Thus an approximation ratio α for depot-demand instances implies an approximation ratio of 17α + 8
for general instances. In the next subsection, we show an O(log t)-approximation algorithm for depot-
demand instances (here t is the number of depots), which implies Theorem 1.

2.2 Algorithm for Depot-demand Instances

Let J be any depot-demand instance: note that the instance defined in the second step of UncapMulti is
of this form. It suffices to restrict the algorithm to the induced metric (R, d) on only depot vertices, and
use only one vehicle at each depot in R. Consider an undirected graph H consisting of vertex set R and
edges corresponding to demands: there is an edge between vertices r and s iff there is an object going
from either r to s or s to r. Note that the metric length of any edge inH is at most the optimal makespan
B̃ of instance J . In the schedule produced by our algorithm, vehicles will only use edges of H . Thus in
order to obtain an O(log t) approximation, it suffices to show that each vehicle only traverses O(log t)
edges. Based on this, we further reduce J to the following instance H of uncapacitated mDaR: the
underlying metric is shortest paths in graph H (on vertices R), with one vehicle at each R-vertex, and
for every edge (u, v) ∈ H there is a demand from u to v and one from v to u. Clearly any schedule for
H having makespan β implies one for J of makespan β · B̃. The next lemma implies an O(log |R|)
approximation for depot-demand instances.

Lemma 6 There exists a poly-time computable schedule forH with makespan O(log t), where t = |R|.

Proof: Let α = dlg te + 1. We first construct a sparse spanner A of H as follows: consider edges of
H in an arbitrary order, and add an edge (u, v) ∈ H to A iff the shortest path between u and v using
current edges of A is more than 2α. It is clear from this construction that the girth of A (length of its
shortest cycle) is at least 2α, and that for every edge (u, v) ∈ H , the shortest path between u and v in A
is at most 2α.

We now assign each edge of A to one of its end-points such that each vertex is assigned at most
two edges. Repeatedly pick any vertex v of degree at most two in A, assign its adjacent edges to v,
and remove these edges and v from A. We claim that at the end of this procedure (when no vertex has
degree at most 2), all edges of A would have been removed (i.e. assigned to some vertex). Suppose for a
contradiction that this is not the case. Let Ã 6= ∅ be the remaining graph; note that Ã ⊆ A, so girth of Ã
is at least 2α. Every vertex in Ã has degree at least 3, and there is at least one such vertex w. Consider
performing a breadth-first search in Ã from w. Since the girth of Ã is at least 2α, the first α levels of
the breadth-first search is a tree. Furthermore every vertex has degree at least 3, so each vertex in the
first α − 1 levels has at least 2 children. This implies that Ã has at least 1 + 2α−1 > t vertices, which
is a contradiction! For each vertex v ∈ R, let Av denote the edges of A assigned to v by the above
procedure; we argued that ∪v∈RAv = A, and |Av| ≤ 2 for all v ∈ R.

The schedule forH involves 2α rounds as follows. In each round, every vehicle v ∈ R traverses the
edges in Av (in both directions) and returns to v. Since |Av| ≤ 2 for all vertices v, each round takes 4
units of time; so the makespan of this schedule is 8α = O(log t). The route followed by each object in
this schedule is the shortest path from its source to destination in spanner A; note that the length of any
such path is at most 2α. To see that this is indeed feasible, observe that every edge of A is traversed by
some vehicle in each round. Hence in each round, every object traverses one edge along its shortest path
(unless it is already at its destination). Thus after 2α rounds, all objects are at their destinations.

Note that the final algorithm for uncapacitated mDaR preempts each object at most O(log t) times,
and only at depot-vertices. This completes the proof of Theorem 1.

2.3 Tight Example for Uncapacitated mDaR Lower Bounds

We note that known lower bounds for uncapacitated mDaR are insufficient to obtain a sub-logarithmic
approximation guarantee. The lower bounds we used in our algorithm are the following: maxi∈[m] d(si, ti),
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and the optimal value of a nurse-station-location instance with depots {rj}qj=1 and terminals S ∪ T . We
are not aware of any lower bounds stronger than these two bounds.

We show an instance G of uncapacitated mDaR where the optimal makespan is a factor Ω( log t
loglog t)

larger than both the above lower bounds. In fact, the instance we construct is a depot-demand instance
that has the same special structure as instance H in Lemma 6. I.e. the demand graph is same as the
graph inducing distances. Take G = (V,E) to be a t-vertex regular graph of degree ∼ log t and girth
g ∼ log t/ loglog t (there exist such graphs, eg. Lazebnik et al. [23]). Instance G is defined on a metric
on vertices V with distances being shortest paths in graph G. For every edge (u, v) ∈ E of graph G,
there is an object with source u and destination v (the direction is arbitrary). There is one vehicle located
at every vertex of V ; so number of vehicles q = t.

Observe that both our lower bounds are O(1): the optimal value of the nurse-station-location in-
stance is 0, and maximum source-destination distance is 1. However as we show below, the optimal
makespan for this instance is at least g − 1 = Ω(log t/ loglog t). Suppose (for contradiction) that there
is a feasible schedule for G with makespan M < g − 1. A demand (u, v) ∈ E is said to be completely
served by a vehicle j iff the route of vehicle j visits both vertices u and v. The number of distinct
vertices visited by any single vehicle is at most M < g: so the number of demands that are completely
served by a single vehicle is at mostM−1 (otherwise these demand edges would induce a cycle smaller
than the girth g). Hence the number of demands that are completely served by some vehicle is at most
t · g < |E|. Let (u, v) ∈ E be a demand that is not completely served by any vehicle, i.e. there is no
vehicle that visits both u and v. Since we have a feasible schedule of makespan M , the path π followed
by demand (u, v) from u to v (or vice versa) in the schedule has length at most M . The path π can not
be the direct edge (u, v) since demand (u, v) is not completely served by any vehicle. So path π together
with edge (u, v) is a cycle of length at most M + 1 < g in graph G, contradicting girth of G.

2.4 Improved Algorithm for Metrics Excluding a Fixed Minor

We now prove Theorem 2 that gives a constant approximation algorithm for uncapacitated mDaR on
metrics induced by Kr-minor free graphs (for any fixed r). This improvement comes from using the
existence of good ‘sparse covers’ in such metrics, as opposed to the spanner based construction in
Lemma 6. This guarantee is again relative to the above mentioned lower bounds.

Consider an instance of uncapacitated mDaR on metric (V, d) that is induced by an edge-weighted
graph G = (V,E) containing no Kr-minor (for some fixed r ≥ 1). We start with some definitions [4].
A cluster is any subset of vertices. For any γ > 0 and vertex v ∈ V , N(v, γ) := {u ∈ V | d(u, v) ≤ γ}
denotes the set of vertices within distance γ from v. As observed in Busch et al. [4] and Abraham et
al. [1], the partitioning scheme of Klein et al. [22] implies the following result.

Theorem 7 ([22]) Given Kr-minor free graph G = (V,E,w) and value γ > 0, there is an algorithm
that computes a set Z = {C1, · · · , Cl} of clusters satisfying:

1. The diameter of each cluster is at mostO(r2) ·γ, i.e. maxu,v∈Ci d(u, v) ≤ O(r2) ·γ for all i ∈ [l].

2. For every v ∈ V , there is some cluster Ci ∈ Z such that N(v, γ) ⊆ Ci.

3. For every v ∈ V , the number of clusters in Z that contain v is at most O(2r).

The set of clusters Z found above is called a sparse cover of G.

Proof: [Theorem 2] The reduction in Section 2 implies that it suffices to consider depot-demand in-
stances: AnO(1) approximation for such instances implies anO(1) approximation for general instances.
Let J be any depot-demand instance on metric (V, d) induced byKr-minor free graphG = (V,E), with
a setR ⊆ V of depot-vertices (each containing a vehicle), and where all demands {si, ti}mi=1 are between
vertices of R. The algorithm is described in Figure 2.
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Input: Depot-demand instance J on metric G = (V,E,w), depot-vertices R ⊆ V , demands {si, ti}mi=1.

1. Let γ = maxi∈[m] d(si, ti) be the maximum source-destination distance.

2. Compute a sparse cover Z = {Cj}lj=1 given in Theorem 7 for parameter γ.

3. For each cluster Cj ∈ Z, choose an arbitrary vertex cj ∈ Cj as its center.

4. For each demand i ∈ [m], let π(i) ∈ [l] be such that si, ti ∈ Cπ(i).
5. Output the following schedule for J :

(a) Each vehicle r ∈ R visits the centers of all clusters containing r, and returns to r. Vehicle r
carries all the objects {i ∈ [m] | si = r} having source r, and drops each object i at center
cπ(i).

(b) Each vehicle r ∈ R again visits the centers of all clusters containing r. Vehicle r brings all
the objects {i ∈ [m] | ti = r} having destination r: each object i is picked up from center
cπ(i).

Output: An O(1)-approximate minimum makespan schedule for J .

Figure 2: Algorithm for uncapacitated mDaR on Kr-minor free graphs.

Note that γ is a lower bound on the optimal makespan of J . We claim that the makespan of the
above schedule is at most O(r2 2r) · γ. Observe that each depot is contained in at most O(2r) clusters,
and the distance from any depot to the center of any cluster containing it is at most O(r2) · γ. Hence the
time taken by each vehicle in either of the two rounds (Steps (5a)-(5b)) is at most O(r22r) · γ. Since r
is a fixed constant, the final makespan is O(1) · γ.

We now argue the feasibility of the above schedule. Step (4) is well-defined: for all i ∈ [m], we
have si, ti ∈ N(si, γ) and there is some j ∈ [l] with N(si, γ) ⊆ Cj (i.e. we can set π(i) = j). It is now
easy to see that each object i ∈ [m] traces the following route in the final schedule: si  cπ(i)  ti.

Combining this algorithm for depot-demand instances with the reduction in Subsection 2.1, we
obtain an O(r2 2r)-approximation algorithm for uncapacitated mDaR on Kr-minor free metrics. When
r is a fixed constant this is a constant approximation, and we obtain Theorem 2. Note that each object
in the resulting schedule is preempted at most thrice, and only at depot-vertices.

3 Capacitated Multi-Vehicle Dial-a-Ride

In this section we prove our main result: an O(log3 n)-approximation algorithm for the mDaR problem
(with capacities). We first obtain a new structure theorem on single-vehicle Dial-a-Ride tours (Subsec-
tion 3.1) that preempts each object at most once, and where the total time spent by objects in the vehicle
is bounded. Obtaining such a single vehicle tour is crucial in our algorithm for capacitated mDaR, which
appears in Section 3.2. There we prove a weaker approximation bound of O(log2m log n); in Subsec-
tion 3.3 we show how to remove the dependence on m to obtain an O(log3 n)-approximation algorithm
even for “weighted mDaR” (i.e. Theorem 3). In Subsection 3.4, we establish a stronger structure the-
orem (analogous to the one in Subsection 3.1) for metrics excluding any fixed minor; this immediately
leads to an improved O(log2 n)-approximation ratio for mDaR on such metrics (i.e. Theorem 4).

3.1 Capacitated Vehicle Routing with Bounded Delay

Before we present the structural result on Dial-a-Ride tours, we consider the classic capacitated vehicle
routing problem [19] with an additional constraint on object ‘delays’. The capacitated vehicle routing
problem (CVRP) is a special case of single vehicle Dial-a-Ride when all objects have the same source (or
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equivalently, same destination). Formally, we are given a metric (V, d), specified depot-vertex r ∈ V ,
and m objects all having source r and respective destinations {ti}i∈[m]. The goal is to compute a
minimum length non-preemptive tour of a capacity k vehicle originating at r that moves all objects from
r to their destinations. In CVRP with bounded delay, we are additionally given a delay parameter β > 1,
and the goal is to find a minimum length capacitated non-preemptive tour serving all objects such that
the time spent by each object i ∈ [m] in the vehicle is at most β · d(r, ti). Well-known lower bounds
for the CVRP [19] are as follows: minimum length TSP tour on {r} ∪ {ti | i ∈ [m]} (Steiner lower
bound), and 2

k

∑m
i=1 d(r, ti) (flow lower bound). These lower bounds also hold for the (less constrained)

preemptive version of CVRP.

Theorem 8 There is a (2.5 + 3
β−1)-approximation algorithm for CVRP with bounded delay, where

β > 1 is the delay parameter. This guarantee is relative to the Steiner and flow lower bounds.

Proof: Our algorithm is basically a combination of the algorithms for light approximate shortest path
trees [21], and capacitated vehicle routing [19]. Let LB denote the maximum of the Steiner and flow
lower bounds. The minimum TSP tour on the destinations plus r is the Steiner lower bound. The first
step is to compute an approximately minimum TSP tour C: Christofides’ algorithm [11] gives a 1.5-
approximation, so d(C) ≤ 1.5 ·LB. Number the vertices in the order in which they appear in C, starting
with r being 0. Using the procedure in Khuller et al. [21], we obtain a set of edges {(0, v1), · · · , (0, vt)}
with 0 < v1 < v2 < · · · < vt < |V | having the following properties (below v0 = 0).

1. For 1 ≤ p ≤ t, for any vertex u with vp−1 ≤ u < vp, the length of edge (0, vp−1) plus the path
along C from vp−1 to u is at most β · d(0, u).

2.
∑t

p=1 d(0, vp) ≤ 1
β−1 · d(C).

For each 1 ≤ p ≤ t, define tourCp which starts at r, goes to vp−1, traversesC until vp, then returns to
r. Assign vertices {vp−1, · · · , vp−1} (and all demands contained in them) to Cp. Also define tour Ct+1

which starts at r, goes to vt, and traversesC until r; and assign all remaining demands toCt+1. It is clear
that Cp (for 1 ≤ p ≤ t+1) visits each vertex assigned to it within β times the shortest path from r (using
property 1 above). Also, the total length

∑t+1
p=1 d(Cp) = d(C) + 2

∑t
p=1 d(0, vp) ≤ (1 + 2

β−1)d(C), by
property 2.

For each Cp, we service the set Dp of demands assigned to it separately. Index the demands in Dp

in the order in which they appear on Cp (breaking ties arbitrarily). Consider a capacitated tour which
serves these demands in groups of at most k each, and returns to r after serving each group. The groups
are defined as follows: starting at index 1, each group contains the next k contiguous demands (until all
of Dp is assigned to groups). By rotating the indexing of demands, there are k different groupings of Dp

that can be obtained: each of which corresponds to a capacitated tour. As argued in [19] (and is easy to
see), the average length of these k tours is at most d(Cp) + 2

∑
z∈Dp

d(r,z)
k . So the minimum length tour

γp among these satisfies d(γp) ≤ d(Cp) + 2
∑

z∈Dp

d(r,z)
k .

The final solution γ is the concatenation of tours γ1, · · · , γt+1. Note that the time spent in the vehicle
by any demand i is at most β · d(r, ti). The length of tour γ is at most

∑t+1
p=1 d(Cp) + 2

∑
z∈D

d(r,z)
k ,

where D is the set of all demands. Note that 2
∑

z∈D
d(r,z)
k is the flow lower bound for this CVRP

instance, so it is at most LB. Hence we obtain the following.

d(γ) ≤ (1 +
2

β − 1
)d(C) + LB ≤ (1 +

2

β − 1
)
3

2
LB + LB = (2.5 +

3

β − 1
)LB

Clearly, solution γ satisfies the desired conditions in the theorem.

We now consider the single vehicle preemptive Dial-a-Ride problem given by a metric (V, d), a set
D of demand-pairs, and a vehicle of capacity k. Given Theorem 8, the following structural result is a
simple extension of Theorem 16 from Gupta et al. [18]. We present the proof for completeness.
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Theorem 9 There is a randomized poly-time computable 1-preemptive tour τ servicing D that satisfies
the following conditions (where LB is the average of the Steiner and flow lower bounds):

1. Total length: d(τ) ≤ O(log2 n) · LB.

2. Bounded delay:
∑

i∈D Ti ≤ O(log n)
∑

i∈D d(si, ti) where Ti is the total time spent by object
i ∈ D in the vehicle under the schedule given by τ .

Proof: We follow the algorithm of Gupta et al. [18] that obtains a single vehicle 1-preemptive tour
within O(log2 n) factor of the Steiner and flow lower bounds. In addition, we will also ensure the
bounded-delay property. Using the results on probabilistic tree embedding [15], we may assume that
the given metric is a hierarchically well-separated tree T with distance function κ. This only increases
the expected value of the lower bound by a factor of O(log n); i.e. E[L̃B] = O(log n) LB where L̃B
(resp. LB) equals the average of the Steiner and flow lower bounds on metric κ (resp. d). Furthermore,
as discussed in [18], we may assume that the metric κ is induced by a tree T on the original vertex set
V having l = O(log n) levels.

We now partition the demands in T into l sets with Dp (for p = 1, · · · , l) consisting of all demands
i ∈ D having their nearest common ancestor (nca) in level p (i.e. the nca of si and ti is a vertex in level
p). We service each Dp separately using a tour of length O(L̃B). Finally we concatenate the tours for
each level p, to obtain the theorem.

ServicingDp. For each vertex v at level p in T , let Lv denote the demands inDp that have v as their nca.
Let LB(v) denote the average of the Steiner and flow lower-bounds (in metric κ) for the single vehicle
problem with depot v and demands Lv. Clearly the flow lower bounds are disjoint for different vertices
v. Also, the subtrees under any two different level p vertices are disjoint, so the Steiner lower bounds
are disjoint for different v. Thus

∑
v LB(v) ≤ L̃B. We now show how each Lv is served separately.

Servicing Lv. Consider the following two instances of the CVRP problem in metric κ: Isrc with all
sources in Lv and common destination v, and Idest with common source v and all destinations in Lv.
Observe that the Steiner and flow lower bounds for each of Isrc and Idest are all at most 2 LBv.

Consider instance Isrc. Setting delay parameter β = 2 in Theorem 8, we obtain a non-preemptive
tour σv that moves all objects in Lv from their sources to vertex v, such that (1) the length of σv is at
most 11 LBv, and (2) the time spent by each object i ∈ Lv in the vehicle is at most 2κ(si, v). Similarly
for instance Idest, we obtain a non-preemptive tour τv that moves all objects in Lv from vertex v to
their destinations, such that (1) the length of τv is at most 11 LBv, and (2) the time spent by each object
i ∈ Lv in the vehicle is at most 2κ(v, ti). Concatenating these two tours, we obtain that σv · τv is a
1-preemptive tour servicing Lv, of length at most 22 · LB(v), where each object i ∈ Lv spends at most
2(κ(si, v) + κ(v, ti)) = 2 · κ(si, ti) time in the vehicle.

We now obtain a depth-first-search traversal (DFS) on T (restricted to the end-points of demands Dp) to
visit all vertices v in level p that have some demand in their subtree (i.e. Lv 6= ∅), and use the algorithm
described above for servicing demands Lv when v is visited in the DFS. This is the tour servicing Dp.
Note that the length of the DFS is at most the Steiner lower bound on κ, so it is at most 2 L̃B. Thus the
tour servicing Dp has length at most 2 L̃B + 22

∑
v LB(v), where v ranges over all vertices in level p of

T . Recall that
∑

v LB(v) ≤ L̃B, so the tour servicing Dp has length at most 24 · L̃B. Additionally, the
time spent by each object i ∈ Dp in the vehicle is at most 2κ(si, ti).

Finally concatenating the tours for each level p = 1, · · · , l, we obtain a 1-preemptive tour on T of
length O(log n) · L̃B. Additionally, the time spent by each object i in the vehicle is at most 2 · κ(si, ti).
This translates to a 1-preemptive tour on the original metric having expected length O(log2 n) · LB, and
with E[

∑
i∈D Ti] ≤

∑
i∈D 2 · E[κ(si, ti)] ≤ O(log n)

∑
i∈D d(si, ti), where Ti is the time spent by

object i in the vehicle. Using Markov inequality and a union bound, we can ensure that the resulting
1-preemptive tour on metric d satisfies both conditions 1-2 with constant probability.
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3.2 Algorithm for Capacitated mDaR

We are now ready to present our algorithm for capacitated multi-vehicle Dial-a-Ride. The algorithm for
mDaR relies on a partial coverage algorithm Partial that given subsetsQ ⊆ [q] of vehicles andD ⊆ [m]
of demands, outputs a schedule for Q of near-optimal makespan that covers some fraction of demands
in D. The main steps in Partial are as follows.

1. Obtain a single-vehicle tour satisfying 1-preemptive and bounded-delay properties (Theorem 9).

2. Randomly partition the single vehicle tour into |Q| equally spaced pieces.

3. Solve a matching problem to assign some of these pieces to vehicles of Q, so as to satisfy a subset
of demands in D.

4. A suitable fraction of unsatisfied demands in D are covered recursively by unused vehicles of Q.

The algorithm first guesses the optimal makespan B of the given instance of mDaR (it suffices to
know B within a constant factor, which is required for a polynomial-time algorithm). Let parameter
α := 1− 1

1+lgm . For any subset P ⊆ [q], we abuse notation and use P to denote both the set of vehicles
P and the multi-set of depots corresponding to vehicles P .

We give an algorithm Partial that takes as input a tuple 〈Q,D,B〉 where Q ⊆ [q] is a subset of
vehicles, D ⊆ [m] a subset of demands and B ∈ R+, with the promise that vehicles Q (originating
at their respective depots) suffice to completely serve the demands D at a makespan of B. Given such
a promise, Partial 〈Q,D,B〉 returns a schedule of makespan O(log n logm) · B that serves a good
fraction of D. Algorithm Partial〈Q,D,B〉 is given in Figure 3. We set parameter ρ = Θ(log n logm),
the precise constant in the Θ-notation comes from the analysis.

Lemma 10 If there exists a schedule of vehicles Q covering all demands D, having makespan at most
B, then Partial invoked on 〈Q,D,B〉 returns a schedule of vehiclesQ of makespan at most (16+16ρ)·B
that covers at least an αlg z fraction of D, where z := min{|Q|, 2m} ≤ 2m.

The final algorithm invokes Partial iteratively until all demands are covered: each time with the entire set
[q] of vehicles, all uncovered demands, and boundB. IfD ⊆ [m] is the set of uncovered demands at any
iteration, Lemma 10 implies that Partial〈[q], D,B〉 returns a schedule of makespan O(logm log n) · B
that serves at least 1

4 |D| demands. Hence a standard set-cover analysis implies that all demands will be
covered in O(logm) rounds, resulting in a makespan of O(log2m log n) ·B.

Proof of Lemma 10. We proceed by induction on the number |Q| of vehicles. The base case |Q| = 1 is
easy: the tour τ in Step (2) has length O(log2 n) ·B ≤ ρB, and satisfies all demands (i.e. fraction 1). In
the following, we prove the inductive step, when |Q| ≥ 2.

Preprocessing. Suppose Step (1) applies. Note that d(V1, V2) > B and hence there is no demand with
source in one of {V1, V2} and destination in the other. So demands D1 and D2 partition D. Furthermore
in the optimal schedule, vehicles Qj (any j = 1, 2) only visit vertices in Vj (otherwise the makespan
would be greater than B). Thus the two recursive calls to Partial satisfy the assumption: there is some
schedule of vehicles Qj serving Dj having makespan B. Inductively, the schedule returned by Partial
for each j = 1, 2 has makespan at most (16 + 16ρ) · B and covers at least αlg c · |Dj | demands from
Dj , where c ≤ min{|Q| − 1, 2m} ≤ z. The schedules returned by the two recursive calls to Partial can
clearly be run in parallel and this covers at least αlg z(|D1|+ |D2|) demands, i.e. an αlg z fraction of D.
So we have the desired performance in this case.
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Input: Vehicles Q ⊆ [q], demands D ⊆ [m], bound B ≥ 0 such that Q can serve all demands in D
at makespan B.

Preprocessing

1. If the minimum spanning tree (MST) on vertices Q contains an edge of length greater than
3B, there is a non-trivial partition {Q1, Q2} of Q with d(Q1, Q2) > 3B. For j ∈ {1, 2}, let
Vj = {v ∈ V | d(Qj , v) ≤ B} and Dj be all demands of D induced on Vj . Run in parallel the
schedules from Partial〈Q1, D1, B〉 and Partial〈Q2, D2, B〉. Assume this is not the case in the
following.

Random partitioning

2. Obtain single-vehicle 1-preemptive tour τ using capacity k and serving demands D, by apply-
ing Theorem 9.

3. Choose a uniformly random offset η ∈ [0, ρB] and cut edges of tour τ at distances {pρB + η |
p = 1, 2, · · · } along the tour to obtain a set P of pieces of τ .

4. C ′′ is the set of objects i ∈ D such that i is carried by the vehicle in τ over some edge that is
cut in Step (3); and C ′ := D \ C ′′. Ignore C ′′ objects in the rest of the algorithm.

Load rebalancing

5. Construct bipartite graph H with vertex sets P and Q and an edge between piece P ∈ P and
depot f ∈ Q iff d(f, P ) ≤ 2B. For any subset A ⊆ P , Γ(A) ⊆ Q denotes the neighborhood
of A in graph H . Let S ⊆ P be any maximal set that satisfies |Γ(S)| ≤ |S|2 .

6. Compute a 2-matching π : P \ S → Q \ Γ(S), i.e. function s.t. (P, π(P )) is an edge in H for
all P ∈ P \ S , and the number of pieces mapping to any f ∈ Q \ Γ(S) is |π−1(f)| ≤ 2.

Recursion

7. Define C1 := {i ∈ C ′ | either si ∈ S or ti ∈ S}; and C2 := C ′ \ C1.

8. Run in parallel the recursive schedule Partial〈Γ(S), C1, B〉 for C1 and the following for C2:

(a) Each vehicle f ∈ Q \ Γ(S) traverses the pieces π−1(f), moving all C2-objects in them
from their source to preemption-vertex, and returns to its depot.

(b) Each vehicle f ∈ Q \ Γ(S) again traverses the pieces π−1(f), this time moving all C2-
objects in them from their preemption-vertex to destination, and returns to its depot.

Output: A schedule of Q of makespan (16 + 16ρ) ·B that serves an αlgmin{|Q|,2m} fraction of D.

Figure 3: Algorithm Partial〈Q,D,B〉 for capacitated mDaR.

Random partitioning. The harder part of the algorithm is when Step (1) does not apply: so the MST
length on Q is at most 3|Q| ·B. Note that when the depots Q are contracted to a single vertex, the MST
on the end-points ofD plus the contracted depot-vertex has length at most |Q| ·B (the optimal makespan
schedule induces such a tree). Thus the MST on the depots Q along with end-points of D has length at
most 4|Q| · B. Based on the assumption in Lemma 10 and the flow lower bound for mDaR, we have∑

i∈D d(si, ti) ≤ k|Q| ·B. It follows that for the single vehicle Dial-a-Ride instance solved in Step (2),
the Steiner and flow lower-bounds (denoted LB in Theorem 9) are O(1) · |Q|B. Theorem 9 now implies
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that (with high probability) τ is a 1-preemptive tour servicing D, of length at most O(log2 n)|Q| · B
such that

∑
i∈D Ti ≤ O(log n) · |D|B, where Ti denotes the total time spent in the vehicle by demand

i ∈ D. The bound on the delay uses the fact that maxmi=1 d(si, ti) ≤ B.
Choosing a large enough constant corresponding to ρ = Θ(log n logm), the length of τ is upper

bounded by ρ|Q| · B (since n ≤ 2m). So the cutting procedure in Step (3) results in at most |Q| pieces
of τ , each of length at most 2ρB. The objects i ∈ C ′′ (as defined in Step (4)) are called a cut objects.
We restrict attention to the other objects C ′ = D \ C ′′ that are not ‘cut’. For each object i ∈ C ′, the
path traced by it (under single vehicle tour τ ) from its source si to preemption-point and the path from
its preemption-point to ti are both completely contained in pieces of P . Figure 4 gives an example of
objects in C ′ and C ′′, and the cutting procedure.

Claim 11 The expected number of objects in C ′′ is at most
∑

i∈D
Ti
ρB ≤ O( 1

logm) · |D|.

Proof: The probability (over choice of η) that object i ∈ D is cut equals Ti
ρB where Ti is the total time

spent by i in tour τ . The claim follows by linearity of expectation and
∑

i∈D Ti ≤ O(log n) · |D|B.

We can derandomize Step (3) and pick the best offset η (there are at most polynomially many
combinatorially distinct offsets). Claim 11 implies (again choosing large enough constant in ρ =
Θ(log n logm)) that |C ′| ≥ (1 − 1

2 lgm)|D| ≥ α · |D| demands are not cut; note that this occurs
with probability one since we use the best choice for η. Now onwards we only consider the set C ′ of
uncut demands. Let P denote the pieces obtained by cutting τ as above, recall |P| ≤ |Q|. A piece
P ∈ P is said to be non-trivial if the vehicle in the 1-preemptive tour τ carries some C ′-object while
traversing P . Note that the number of non-trivial pieces in P is at most 2|C ′| ≤ 2m: each C ′-object
appears in at most 2 pieces, one where it is moved from source to preemption-vertex and other from
preemption-vertex to destination. Retain only the non-trivial pieces in P; so |P| ≤ min{|Q|, 2m} = z.
The pieces in P may not be one-to-one assignable to the depots since the algorithm has not taken the
depot locations into account. We determine which pieces may be assigned to depots by considering a
matching problem between P and the depots in Step (5) and (6).

Load rebalancing. The bipartite graph H (defined in Step (5)) represents which pieces and depots
may be assigned to each other. Piece P ∈ P and depot f ∈ Q are assignable iff d(f, P ) ≤ 2B, and in
this case graph H contains an edge (P, f). We claim that corresponding to the ‘maximal contracting’
set S (defined in Step (5)), the 2-matching π (in Step (6)) is guaranteed to exist. Note that |Γ(S)| ≤ |S|2 ,
but |Γ(T )| > |T |

2 for all T ⊃ S . For any T ′ ⊆ P \ S, let Γ̃(T ′) denote the neighborhood of T ′ in
Q \ Γ(S). The maximality of S implies: for any non-empty T ′ ⊆ P \ S, |S|2 + |T ′|

2 = |S∪T ′|
2 <

|Γ(S ∪ T ′)| = |Γ(S)| + |Γ̃(T ′)|, i.e. |Γ̃(T ′)| ≥ |T ′|2 . Hence by Hall’s condition, there is a 2-matching
π : P \ S → Q \ Γ(S). The set S and 2-matching π can be easily computed in polynomial time.

Recursion. In Step (7), demands C ′ are further partitioned into two sets: C1 consists of objects that
are either picked-up or dropped-off in some piece of S; and C2-objects are picked-up and dropped-off
in pieces of P \ S. The vehicles Γ(S) suffice to serve all C1 objects, as shown below.

Claim 12 There exists a schedule of vehicles Γ(S) serving demands C1, having makespan B.

Proof: Consider the schedule of makespan B that serves all demands C ′ = C1 ∪ C2 using vehicles Q:
this is implied by the promise on instance 〈Q,D,B〉. We claim that in this schedule, no vehicle from
Q \ Γ(S) moves any C1 object. Suppose (for a contradiction) that the vehicle from depot f ∈ Q \ Γ(S)
moves object i ∈ C1 at some point in this schedule; then it must be that d(f, si) and d(f, ti) ≤ 2B. But
since i ∈ C1, at least one of si or ti is in a piece of S, and this implies that there is some piece P ∈ S
with d(f, P ) ≤ 2B, i.e. f ∈ Γ(S), which is a contradiction! Thus the only vehicles participating in the
movement of C1 objects are Γ(S), which implies the claim.
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The 1-preemptive tour τ is cut at the dashed lines.

Object 1 is in C ′, it is not cut.

Object 2 is not in C ′, it is a cut object.

s2

S
Γ(S)

P Q

The bipartite graph H

The 2-matching π is shown by dashed edges.

Solved recursively

Figure 4: Cutting and patching steps in algorithm Partial.

In the final schedule, a large fraction of C1 demands are served by vehicles Γ(S), and all the C2

demands are served by vehicles Q \ Γ(S). Figure 4 shows an example of this partition.
Serving C1 demands. Based on Claim 12, the recursive call Partial 〈Γ(S), C1, B〉 (made in

Step (8)) satisfies the assumption required in Lemma 10. Since |Γ(S)| ≤ |P|
2 ≤

|Q|
2 < |Q|, we ob-

tain inductively that Partial 〈Γ(S), C1, B〉 returns a schedule of makespan (16 + 16ρ) · B covering at
least αlg y · |C1| demands of C1, where y = min{|Γ(S)|, 2m}. Note that y ≤ |Γ(S)| ≤ |P|/2 ≤ z/2
(recall |P| ≤ z), which implies that at least αlg z−1|C1| demands are covered.

Serving C2 demands. These are served by vehiclesQ\Γ(S) using the 2-matching π, in two rounds
as specified in Step (8). This suffices to serve all objects in C2 since for any i ∈ C2, the paths traversed
by object i under τ , namely si  pi (its preemption-point) and pi  ti are contained in pieces of P \S.
Furthermore, since |π−1(f)| ≤ 2 for all f ∈ Q\Γ(S), the distance traveled by vehicle f in one round is
at most 2 ·2(2B+2ρB). So the time taken by this schedule is at most 2 ·4(2B+2ρB) = (16+16ρ) ·B.

The schedule of vehicles Γ(S) (serving C1) and vehicles Q \ Γ(S) (serving C2) can clearly be run
in parallel. This takes time (16 + 16ρ) ·B and covers in total at least |C2|+αlg z−1|C1| ≥ αlg z−1|C ′| ≥
αlg z|D| demands of D. This completes the proof of the inductive step of Lemma 10.

Using Lemma 10 repeatedly as mentioned earlier, we obtain an O(log2m · log n)-approximation
algorithm. Using some preprocessing steps (described in the next subsection), we have Theorem 3.

3.3 Weighted mDaR

The multi-vehicle Dial-a-Ride problem as defined assumes that all objects have the same ‘weight’, i.e.
each object occupies a unit capacity. In the weighted mDaR problem, each object i ∈ [m] also has
a weight wi, and the capacity constraint requires that no vehicle carry a total weight of more than k
at any time. In this section, we obtain an O(log3 n)-approximation algorithm for weighted mDaR. In
particular this would imply Theorem 3.

The algorithm for weighted mDaR first guesses the optimal makespan B of the given instance. It
serves the demands in two phases: the 1st phase involves pre-processing ‘heavy demands’ and has a
makespan of O(1) · B; the 2nd phase is identical to the algorithm Partial in Section 3.2 and covers all
remaining demands. For every u, v ∈ V let demu,v denote the total weight of objects having source u
and destination v. Define H = {(u, v) ∈ V × V | demu,v ≥ k/2} to be the heavy vertex-pairs, and Ĥ
the set of demands between pairs of H .
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Phase I. In this pre-processing step, we cover all demands Ĥ between heavy vertex-pairs. The al-
gorithm PreProc for solving instance U and its analysis follow along the lines of algorithm Partial in
Section 3.2; in fact it is much easier. Below we use the same notation P ⊆ [q] for a set P of vehicles and
the multi-set of depots corresponding to P . The algorithm PreProc will satisfy the following property.

Lemma 13 Given any subset Q ⊆ [q] of vehicles and D ⊆ H of heavy vertex-pairs and bound B such
that there is a schedule of vehiclesQ covering demands D̂ with makespan at mostB, PreProc〈Q,D,B〉
returns a schedule of vehicles Q covering demands D̂ that has makespan O(1) ·B.

Note: Invoking PreProc〈[q], H,B〉 gives the desired schedule covering Ĥ at makespan O(1) ·B.
Algorithm PreProc first ensures that each edge of the minimum spanning tree on Q has length at

most 3B, otherwise the problem decouples into two disjoint smaller problems (as in Step (1) of Partial).
Hence, as in algorithm Partial, we also obtain that:

The MST on all sources/destinations in D has length at most O(1) · |Q|B (1)

Demands with source u and destination v are referred to as (u, v) demands. For every (u, v) ∈ D,
using a greedy procedure, one can partition all (u, v) demands such that the total weight of each part
(except possibly the last) is between k

2 and k. For any (u, v) ∈ D, let gu,v denote the number of parts in
this partition of (u, v) demands; note that gu,v ≤ 2

kdemu,v + 1 ≤ 4
kdemu,v (since demu,v ≥ k/2). The

flow lower bound for the mDaR instance with vehiclesQ and demands D̂ equals 1
|Q|k

∑
(u,v)∈D demu,v ·

d(u, v) ≥ 1
4|Q|

∑
(u,v)∈D gu,v · d(u, v). Using the assumption in Lemma 13, we have that:∑

(u,v)∈D

gu,v · d(u, v) ≤ 4|Q|B. (2)

In the rest of algorithm PreProc, we will consider each part in the above partition of (u, v) demands
(for each (u, v) ∈ D) as a single object of weight k; so all the objects in one part will be moved
together. Scaling down the weights and capacity by k, we obtain the following equivalent unit-weight
unit-capacity instance U : for each (u, v) ∈ D there are gu,v demands with weight 1, source u and
destination v, and each vehicle in Q has capacity 1.

Since U has unit capacity and weights, we can use the Stacker-crane algorithm [16] to obtain a single
vehicle non-preemptive tour τ serving all demands, having length 1.8 times the Steiner and flow lower
bounds. For this single vehicle problem, the lower bounds corresponding to U are: (Steiner bound) TSP
on all sources/destinations inD, and (flow bound)

∑
(u,v)∈H gu,v ·d(u, v). From (1) and (2) above, these

are both O(1) · |Q|B. The algorithm next cuts tour τ to obtain at most |Q| pieces P such that each piece
has length O(1) · B. In addition it can be ensured that no object is being carried over the cut edges:
since the vehicle carries at most one object at any time and each source-destination distance is at most
B. When |Q| = 1, the algorithm ends here, and returns this single tour of length O(1)B that serves all
demands D̂. This proves the base case of Lemma 13.

When |Q| ≥ 2, construct bipartite graph H with vertex sets P and Q and an edge between piece
P ∈ P and depot f ∈ Q iff d(f, P ) ≤ 2B; Γ(A) denotes the neighborhood of any A ⊆ P in H. The
algorithm finds any maximal set S ⊆ P with |Γ(S)| < |S|/2 (as in Step (5) of Partial). This implies a
2-matching π : P \ S → Q \ Γ(S) such that there exists a schedule of vehicles Γ(S) serving demands
in the pieces S with makespan B (c.f. Claim 12). Let C ⊆ D denote the heavy demand-pairs served
in some piece of S. The final schedule returned by PreProc〈Q,D〉 involves: (i) schedule for vehicles
Q \ Γ(S) given by π (covering demand-pairs D \ C); and (ii) schedule for vehicles Γ(S) obtained
recursively PreProc〈Γ(S), C〉 (covering demands C). The recursively obtained schedule has makespan
O(1) · B by the induction hypothesis (since |Γ(S)| < |Q|, and 〈Γ(S), C〉 satisfies the assumption in
Lemma 13); hence the final schedule also has makespan O(1) ·B, which proves the inductive step.
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Phase II. Let L = {(u, v) ∈ V × V | 0 < demu,v < k/2} be the light vertex-pairs. The algorithm
for this phase treats all (u, v) demands as a single object of weight demu,v from u to v; so there are
m = |L| ≤ n2 distinct objects. The algorithm for this case is identical to Partial of Section 3.2 for the
unweighted case: Theorem 9 generalizes easily to the weighted case, and the Steiner and flow lower-
bounds stay the same after combining demands in L. Thus we obtain an O(log2m log n) = O(log3 n)
approximate schedule that covers all remaining demands (setting m ≤ n2).

Theorem 14 There is a randomizedO(log3 n)-approximation algorithm for weighted preemptive mDaR.

3.4 Improved Guarantee for Metrics Excluding a Fixed Minor

In this section, we show that our algorithm for preemptive mDaR achieves an O(log2 n) approximation
guarantee when the metric is induced by a graph excluding any fixed minor. The main ingredient is the
following improvement in the single vehicle structure from Theorem 9.

Theorem 15 There is a randomized poly-time algorithm that for any instance of single vehicle dial-a-
ride on metrics excluding a fixed minor, computes a 1-preemptive tour τ servicing all demands D that
satifies the following conditions (where LB is the average of the Steiner and flow lower bounds):

1. Total length: d(τ) ≤ O(log n) · LB.

2. Bounded delay:
∑

i∈D Ti ≤ O(1)
∑

i∈D d(si, ti) where Ti is the total time spent by object i ∈ D
in the vehicle under the schedule given by τ .

Using this 1-preemptive tour within the algorithm of Section 3.2 (setting parameter ρ = Θ(logm)),
we immediately obtain Theorem 4. In proving Theorem 15, we first show that metrics induced by
(fixed) minor-free graphs allow a so-called γ-separated cover (Subsection 3.4.1). Then we show (in
Subsection 3.4.2) how this property can be used to obtain the single-vehicle tour claimed in Theorem 15.

3.4.1 γ-Separated Covers

We are given a metric (V, d) that is induced by a graph G = (V,E) and edge-lengths w : E → Z+.
For any pair u, v ∈ V of vertices, the distance d(u, v) equals the shortest path between u and v under
edge-lengths w. We assume that the graphG does not contain anyKr-minor; here r is a fixed parameter.
Recall that a cluster refers to any subset of vertices. We prove the following.

Theorem 16 Given a Kr-minor free graph G = (V,E,w) and integer γ ≥ 0, there is a polynomial-
time algorithm to compute a collection C of clusters along with a partition Z1, . . . , Zp of C such that:

1. p = 2O(r).

2. For each l ∈ [p] and distinct clusters A,B ∈ Zl, the distance between A and B, d(A,B) ≥ γ.

3. The diameter of any cluster in S ∈ C, maxu,v∈S d(u, v) ≤ O(r2) · γ.

4. For any pair u, v ∈ V of vertices with d(u, v) ≤ γ, there is some cluster A ∈ C having u, v ∈ A.

Such a collection C is called γ-separated cover.

The proof of this theorem essentially follows from the KPR decomposition algorithm [22]. In fact
without conditions (1-2), it is implied by Theorem 7. Achieving conditions (1-2) requires a further
modification to the KPR decomposition, as described below.

We first remind the reader of the main property of the KPR decomposition [22]. We will consider
graph G as having unit length edges, by subdividing each edge (u, v) ∈ E to become a path of length
wuv between u and v (this also increases the number of vertices). The distance function d remains
unchanged by this modification.
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Definition 17 (Theorem 4.2, [22]) LetG1 = G and δ ∈ Z+ a distance parameter. LetG1, G2, · · · , Gr+1

be any sequence of subgraphs of G, where each Gi+1 is obtained from Gi as follows:

1. Construct a breadth-first-search tree in Gi from an arbitrary root-vertex.

2. Select any set of δ consecutive levels in this breadth-first-search tree, and let Gi+1 be any con-
nected component of the subgraph in G induced by these levels.

Then, the diameter of Gr+1 is O(r2) · δ.

We are now ready to proceed with the proof of Theorem 16. We give a recursive procedure to gen-
erate the desired γ-separated cover C of G. We initialize C = ∅, and invoke Split〈G,V, 0, φ〉. Algorithm
Split takes as input: an induced subgraph H = (V (H), E(H)) of G, terminals T ⊆ V (H), depth of
recursion i, and color τ ∈ {0, 1, 2}i. Then it does the following.

1. If i = r then add tuple 〈T, τ〉 to collection C, and stop.

2. Construct a BFS tree from any vertex of H , and enumerate the levels starting from zero (at the
root).

3. For each j ∈ {0, 1, 2}, integer l ≥ 0, and connected component H ′ in the subgraph of G induced
by levels {(3l + j − 1)γ, · · · , (3l + j + 3)γ} of BFS do:

(a) Set T ′ ← vertices of T ∩ V (H ′) in levels {(3l + j)γ, · · · , (3l + j + 2)γ} of BFS.
(b) Set τ ′ ← τ concatenated with j.
(c) Recurse on Split〈H ′, T ′, i+ 1, τ ′〉.

At the end of the algorithm, C consists of several tuples of the form 〈C, τ〉 where C is a cluster and
τ ∈ {0, 1, 2}r is its color. This naturally corresponds to partitioning C into p = 3r parts: clusters of the
same color form a part. We now show that C satisfies the conditions in Theorem 16. Condition 1 clearly
holds by the construction.

Condition 4. Let u, v ∈ V be such that d(u, v) ≤ γ, and let P ⊆ V denote the vertices on any
shortest u − v path in G (note that |P | ≤ γ + 1). We claim inductively that for each i ∈ {0, · · · , r},
there is some call to Split at depth i such that all vertices of P appear as terminals. The base case
i = 0 is obvious since all vertices are terminals. Assuming the claim to be true for depth i, we prove
it for i + 1. Let 〈H,T, i, τ〉 denote the call to Split at depth i where P ⊆ T ⊆ V (H). Since the P -
vertices define a path of length at most γ (in G and also H), all P -vertices appear in some γ consecutive
levels of any BFS on H . Thus there exist values j ∈ {0, 1, 2} and l ∈ Z+ such that P is contained in
levels {(3l + j)γ, · · · , (3l + j + 2)γ} of the BFS on H . This implies that one of the recursive calls
(corresponding to this value of j and l) contains P as terminals. Using this claim when i = r implies
that there is some cluster in C containing both u and v (in fact containing the entire path P ).

Condition 3. This is a direct consequence of the KPR decomposition. Note that every subgraph
at depth r of algorithm Split is obtained from G via the sequence of operations in Definition 17 with
δ = 4γ + 1. Thus each such subgraph has diameter O(r2) · γ. Finally, any cluster in C is a subset of
some subgraph at depth r of Split; so it also has diameter O(r2) · γ.

Condition 2. This well-separated property is the main reason for the use of ‘terminals’ in algorithm
Split and the decomposition defined in Step (3). Let A,B be any two distinct clusters in C having the
same color : we will show that d(A,B) ≥ γ. Each of A and B corresponds to a “root-leaf path” in the
recursion tree for algorithm Split (where the root is Split〈G,V, 0, φ〉). Consider the call 〈H,T, i, τ〉 to
Split after which the paths for A and B diverge; let αa = 〈Ha, Ta, i+ 1, τ ′〉 and αb = 〈Hb, Tb, i+ 1, τ ′〉
denote the respective recursive calls from 〈H,T, i, τ〉 where A ⊆ Ta and B ⊆ Tb (note that both have
the same color τ ′ since A and B have the same color at the end of the algorithm). We will show that
d(Ta, Tb) ≥ γ which in particular implies d(A,B) ≥ γ. Note that both αa and αb are generated by the
same value j ∈ {0, 1, 2}, since they have the same color. Let αa (resp. αb) correspond to value l = la
(resp. l = lb). Consider the following cases:
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1. la 6= lb. In this case, we show that the terminal-sets Ta and Tb are far apart in the BFS on
H . Observe that Ta appears within levels {(3la + j)γ, · · · , (3la + j + 2)γ}; and Tb within
{(3lb+j)γ, · · · , (3lb+j+2)γ}. If la < lb (the other case is identical), then 3lb+j ≥ 3la+j+3;
i.e. Ta and Tb are separated by at least γ − 1 levels in the BFS of H . Using Claim 18 below, we
have d(Ta, Tb) ≥ γ in G; otherwise H contains a path from Ta to Tb of length at most γ − 1,
meaning that Ta and Tb are separated by ≤ γ − 2 levels in the BFS, a contradiction!

2. la = lb = l. In this case, it must be that Ha and Hb are two disconnected components of the
subgraph (ofG) induced on levels {(3l+j−1)γ, · · · , (3l+j+3)γ} of the BFS onH . Furthermore,
Ta and Tb both appear within levels {(3l+ j)γ, · · · , (3l+ j+ 2)γ}. Again by Claim 18, we must
have d(Ta, Tb) ≥ γ in G; otherwise H contains a path from Ta to Tb of length at most γ − 1,
which would mean thatHa andHb are connected within levels {(3l+j−1)γ, · · · , (3l+j+3)γ}.

Claim 18 For every call Split〈H,T, i, τ〉, and terminals x, y ∈ T , if d(x, y) ≤ γ (in graph G) then H
contains an x− y path of length at most d(x, y).

Proof: We proceed by induction on i. The claim is obviously true for the call Split〈G,V, 0, φ〉 at depth
0. Assuming the claim for any depth i call Split〈H,T, i, τ〉, we prove it for any call Split〈H ′, T ′, i+1, τ ′〉
generated by it. Let x, y ∈ T ′ with d(x, y) ≤ γ. Clearly x, y ∈ T , and by the induction hypothesis, H
contains an x−y path π of length at most d(x, y) ≤ γ. It suffices to show that π is also contained in H ′.
Let j ∈ {0, 1, 2} and l ∈ Z+ denote the values that generated the recursive call Split〈H ′, T ′, i+ 1, τ ′〉.
Since x, y ∈ T ′, both these vertices lie within levels {(3l + j)γ, · · · , (3l + j + 2)γ} of the BFS on H .
Furthermore, π is an x − y path in H of length at most γ; so π is contained within levels {(3l + j −
1)γ, · · · , (3l + j + 3)γ} and so it lies in the connected component H ′ that contains x and y.

Running time. It is easy to see that each call to Split generates only polynomial number of recursive
calls. Since the depth of the recursion is at most r, the running time is polynomial for fixed r.
This completes the proof of Theorem 16.

We note that the collection C also satisfies the ‘sparse cover’ property (i.e. condition (3) in Theo-
rem 7), namely each vertex v ∈ V appears in at most O(2r) clusters. It is easy to show (inductively)
that the number of depth i calls to Split where any vertex v appears as a terminal is at most 2i. However
this property is not required in the following proof of Theorem 15.

3.4.2 Algorithm for Theorem 15

Recall that we are given an instance of single-vehicle Dial-a-Ride on a metric (V, d) induced by an
edge-weighted Kr-minor free graph G = (V,E,w); here w : E → Z+ denotes the edge-lengths and
d the shortest-path distances under w. The vehicle has capacity k and {si, ti}i∈D are the demand-pairs.
Again r is a fixed constant. LB denotes the average of the Steiner (i.e. minimum TSP tour on all sources
and destinations) and flow lower-bounds (i.e. 1

k

∑
i∈D d(si, ti)) for this instance.

Let ∆ denote the diameter of the metric; by standard scaling arguments, we may assume WLOG
that ∆ is at most polynomial in n = |V |. We group the demands D into into dlog2 ∆e groups based
on the source-destination distances: For each j = 1, · · · , dlog2 ∆e, group Gj consists of those demands
i ∈ D with 2j−1 ≤ d(si, ti) ≤ 2j . We will show how to service each group Gj separately at a cost of
O(1) · LB such that the time spent by each object i ∈ Gj in the vehicle is Ti = O(2j) = O(1) · d(si, ti).
Since the number of groups is O(log n), this would imply the theorem.

Serving group Gj Set distance parameter γ = 2j , and obtain a γ-separated cover C along with its
partition {Z1, · · · , Zp}, using Theorem 16. Each demand i ∈ Gj is assigned to some cluster of C
containing both its end-points: since d(si, ti) ≤ γ, this is well-defined by property (4) of Theorem 15.
We further partition demands in Gj into H1, · · · , Hp where each Hl contains all demands assigned to
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clusters of Zl. The algorithm will serve demands in each Hl separately by a tour of length O(1) · LB
that also satisfies the bounded delay condition 2. This suffices to prove the theorem since p = O(1) by
property (1) of Theorem 16.

Serving Hl. For any cluster S ∈ Zl let B(S) ⊆ Gj denote the demands assigned to S. Let LB(S)
denote the average of the Steiner and flow lower bounds restricted to demandsB(S). Any cluster S ∈ Zl
is called non-trivial ifB(S) 6= ∅. Also pick an arbitrary vertex in each cluster as its center. Let T denote
a 1.5-approximate TSP tour containing the centers of all non-trivial clusters of Zl; this can be computed
in polynomial time [11].

Claim 19 We have
∑

S∈Zl
LB(S) ≤ O(1) · LB, and d(T ) ≤ O(1) · LB.

Proof: It is clear that the sum of the flow lower-bounds over all clusters S ∈ Zl is at most the flow
lower-bound on demands Hl ⊆ D. Let Tsp(S) denote the minimum length TSP on the end points of
demands B(S), i.e. the Steiner lower bound on S. We show below that

∑
S∈Zl

Tsp(S) ≤ O(1) · Tsp
where Tsp denotes the minimum TSP on end points of Hl ⊆ D (i.e. Steiner lower bound on Hl). This
would prove the first part of the claim.

For any cluster S ∈ Zl, let n(S) denote the number of connected segments in Tsp ∩ S (i.e. Tsp
restricted to S), and CS1 , · · · , CSn(S) denote these segments. Note that tour Tsp travels from one cluster
in Zl to another at least

∑
S∈Zl

n(S) times. By property (2) of Theorem 15, the distance between any
two distinct clusters in Zl is at least γ. So we obtain:

Tsp ≥ γ
∑
S∈Zl

n(S) (3)

We define a TSP tour on end-points of demands B(S) by connecting the end points of segments
CS1 , · · · , CSn(S). This requires n(S) new edges, each of length at most O(γ) (i.e. diameter of clus-
ter S, by property (3) of Theorem 15). So the minimum TSP tour for any S ∈ Zl has length Tsp(S) ≤∑n(S)

a=1 d(CSa ) +O(γ) · n(S). Hence,

∑
S∈Zl

Tsp(S) ≤
∑
S∈Zl

n(S)∑
a=1

d(CSa ) +O(γ)
∑
S∈Zl

n(S) ≤ Tsp +O(γ)
∑
S∈Zl

n(S) ≤ O(1) · Tsp .

Above, the second inequality follows from the fact that the CSl s are disjoint segments in Tsp, and
the last inequality uses (3).

To obtain the second part of the claim, augment Tsp as follows. For each non-trivial cluster S ∈ Zl,
add two edges to the center of S from some vertex in Tsp∩S. This gives a TSP tour visiting the centers
of all non-trivial clusters in Zl. Note that the number of non-trivial clusters of Zl is at most

∑
S∈Zl

n(S)
since n(S) ≥ 1 for all non-trivial S ∈ Zl. Since the diameter of each S ∈ Zl is O(γ) (property (3) of
Theorem 15), the increase in length of Tsp is at most 2 · O(γ)

∑
S∈Zl

n(S) ≤ O(1) · Tsp by (3). So
there is a TSP tour on the centers of Zl’s non-trivial clusters having length at most O(1) · LB.

For each S ∈ Zl, the demands B(S) assigned to it are served separately. The flow lower-bound on
S is at least γ

2k |B(S)| (recall that each demand i ∈ Gj has d(si, ti) ≥ γ/2). Consider an instance Isrc
of CVRP with all sources from B(S) and S’s center as the common destination. Since the diameter
of S is O(γ), the flow lower bound of Isrc is at most O(γ) · |B(S)|

k ≤ O(1) · LB(S). The Steiner
lower bound of Isrc is also O(1) · LB(S). So Theorem 8 (with delay parameter β = 2) implies a non-
preemptive tour τsrc(S) that moves all objects from sources of B(S) to the center of S, having length
O(1) · LB(S) such that each object spends at most O(1) · γ time in the vehicle. Similarly, we can obtain
non-preemptive tour τdest(S) that moves all objects from the center of S to destinations ofB(S), having
length O(1) · LB(S) such that each object spends at most O(1) · γ time in the vehicle. Concatenating
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τsrc(S) and τdest(S) gives a 1-preemptive tour serving demands in S having length O(1) · LB(S) such
that each object i ∈ B(S) spends at most O(γ) ≤ O(1) · d(si, ti) time in the vehicle.

The final solution for demands Hl traverses the TSP tour T on centers of all non-trivial clusters of
Zl, and serves the demands in each cluster (as above) when it is visited. The resulting solution has length
at most d(T ) +O(1)

∑
S∈Zl

LB(S) ≤ O(1) · LB, by Claim 19. Moreover, each object i ∈ Hl spends at
most O(1) · d(si, ti) time in the vehicle.

Finally, concatenating the tours serving each Hl (for l = 1, · · · , p), and then the tours serving each
Gj (for j = 1, · · · , dlog2 ∆e), we obtain the 1-preemptive tour claimed in Theorem 15.
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