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Abstract. It is shown that one can count k-edge paths in an n-vertex
graph and m-set k-packings on an n-element universe, respectively, in
time

`
n

k/2

´
and

`
n

mk/2

´
, up to a factor polynomial in n, k, and m; in

polynomial space, the bounds hold if multiplied by 3k/2 or 5mk/2, re-
spectively. These are implications of a more general result: given two set
families on an n-element universe, one can count the disjoint pairs of sets
in the Cartesian product of the two families with O(n`) basic operations,
where ` is the number of members in the two families and their subsets.

1 Introduction

Some combinatorial structures can be viewed as two halves that meet in the
middle. For example, a k-edge path is a combination of two k/2-edge paths.
Bidirectional search [10, 25] finds such structures by searching the two halves
simultaneously until the two search frontiers meet. In instantiations of this idea,
it is crucial to efficiently join the two frontiers to obtain a valid or optimal
solution. For instance, the meet-in-the-middle algorithm for the Subset Sum
problem, by Horowitz and Sahni [15], implements the join operation via a clever
pass through two sorted lists of subset sums.

In the present paper, we take the meet-in-the-middle approach to counting
problems, in particular, to counting paths and packings. Here, the join operation
amounts to consideration of pairs of disjoint subsets of a finite universe, each
subset weighted by the number of structures that span the subset. We begin in
Sect. 2 by formalizing this as the Disjoint Sum problem and providing an algo-
rithm for it based on inclusion–exclusion techniques [5–7, 17, 18, 20]. In Sect. 3
we apply the method to count paths of k edges in a given n-vertex graph in
time O∗

((
n

k/2

))
; throughout the paper, O∗ suppresses a factor polynomial in the

? This research was supported in part by the Academy of Finland, Grants 117499
(P.K.) and 125637 (M.K.).
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mentioned parameters (here, n and k). In Sect. 4 we give another application, to
count k-packings in a given family of m-element subsets of an n-element universe
in time O∗

((
n

mk/2

))
. For both problems we also present slightly slower algorithms

that require only polynomial space.
We note that an earlier report on this work under a different title [8] already

introduces a somewhat more general technique and an application to counting
paths. The report has been cited in some recent papers [1, 26], which we, among
other related previous work, discuss below.

1.1 Related Work and Discussion

Deciding whether a given n-vertex graph contains a Hamiltonian path, that is, a
simple path of n−1 edges, is well known to be NP-hard. The fastest known algo-
rithms, due to Bellman [3, 4] and, independently, Held and Karp [14], are based
on dynamic programming across the vertex subsets and run in time O∗(2n).
Equally fast polynomial-space variants that actually count all Hamiltonian paths
via inclusion–exclusion were discovered later by Kohn, Gottlieb, and Kohn [20],
and independently, Karp [17]. Our algorithm (cf. Theorem 2, for k = n−1), too,
runs in time O∗(2n), if allowing exponential space.

In this light, it is intriguing that the parameterized problem of counting paths
of k edges seems harder than the corresponding decision problem; this is the
present understanding that has emerged from a series of works, starting perhaps
in Papadimitriou and Yannakakis’s [24] conjecture that for k = O(log n) the de-
cision problem can be solved in polynomial time. The conjecture was proved by
Alon, Yuster, and Zwick’s [2] color-coding technique that gave a randomized al-
gorithm with expected running time O∗(5.44k) and a derandomized variant with
running time O∗(ck) for a large constant c. With a more efficient color-coding
scheme, Chen, Lu, Sze, and Zhang [9] improved the latter bound to O∗(12.8k);
see also Kneis, Mölle, Richter, and Rossmanith [19]. Using completely different
techniques, Koutis [22], followed by Williams [27], developed a randomized al-
gorithm that runs in expected time O∗(2k). Unfortunately, it is unlikely that
the randomization based techniques extend to counting. For instance, very re-
cently Alon and Gutner [1] showed that color-coding is doomed to fail as every
“balanced” family of hash functions from a k-set to an n-set is of size at least
c(k)nbk/2c for some function c. Flum and Grohe [12] proved another negative
result, namely that the counting problem is #W[1]-hard with respect to the pa-
rameter k. From a positive side, a very recent result of Vassilevska and Williams
[26] implies that k-edge paths can be counted in time O∗

(
2k(k/2)!

(
n

k/2

))
in poly-

nomial space; our polynomial-space algorithm (cf. Theorem 3) is faster still, by
a factor of (4/3)k/2(k/2)!.

Concerning set packings the situation is analogous, albeit the research has
been somewhat less extensive. Deciding whether a given family of f subsets
of an n-element universe contains a k-packing is known to be W[1]-hard [11],
and thus it is unlikely that the problem is fixed parameter tractable, that is,
solvable in time c(k)fd for some function c and constant d. If f is fairly large,
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say exponential in n, the fastest known algorithms actually count the packings
by employing the inclusion–exclusion machinery [5, 6] and run in time O∗(2n).
This bound holds also for the presented algorithm (cf. Theorem 4).

Again, it is interesting that there is a natural parameterization under which
counting k-packing seems harder than the corresponding decision problem. In-
deed, Jia, Zhang, and Chen [16] showed that the decision problem is fixed pa-
rameter tractable with respect to the total size mk of the packing, assuming
each member is of size m. Koutis [21], followed by Chen, Lu, Sze, and Zhang [9],
gave faster algorithms with running time O∗(cmk) for some constant c; we note
that here the running time also grows about linearly in the input size f , which
can be as large as

(
n
m

)
. For counting m-set k-packings, previous techniques [5,

6] alone only give a running time bound of O∗
((

n
mk

))
if mk ≤ n/2 and O∗(2n)

otherwise. Besides the present work, we are aware of two recent improvements:
For the special case of counting t-matchings, that is 2-set t/2-packings,4 Vas-
silevska and Williams [26] give a time bound of O∗

(
2t+c(t)

(
n

t/2

))
, where c(t) is

of the order o(t); our polynomial-space algorithm (cf. Corollary 1) turns out to
be slightly faster, by a factor of about (4/3)t/2. For the general case, Koutis and
Williams [23] give a time bound of O∗

(
nmk/2

)
; our bounds (Theorem 4) appear

to be superior, e.g., when mk grows linearly in n.
The presented meet-in-the-middle approach resembles the randomized divide-

and-conquer technique by Chen, Lu, Sze, and Zhang [9] and the similar divide-
and-color method by Kneis, Mölle, Richter, and Rossmanith [19], designed for
parameterized decision problems. These can, in turn, be viewed as extensions of
the recursive partitioning technique of Gurevich and Shelah [13] for the Hamil-
tonian Path problem. That said, our contribution is rather in the observation
that, in the counting context, the join operation can be done efficiently using
the inclusion–exclusion machinery. While our formalization of the problem as
the Disjoint Sum problem is new, the solution itself can, in essence, already be
found in Kennes [18], even though in terms of possibility calculus and without
the idea of “trimming,” that is, restricting the computations to small subsets.
Kennes’s results were rediscovered in a dual form and extended to accommodate
trimming in the authors’ recent works [5–7].

2 The Disjoint Sum Problem

Given two set families A and B, and functions α and β that associate each
member of A and B, respectively, an element from a ring R, the Disjoint Sum
problem is to find the sum of the products α(A)β(B) over all disjoint pairs
of subsets (A,B) in the Cartesian product A × B; denote the sum by α � β.
In applications, the ring R is typically the set of integers equipped with the
usual addition and multiplication operation. Note that, had the condition of
disjointness removed, the problem could be easily solved using about |A| + |B|
4 Whether counting t-matchings is fixed-parameter tractable remains a major open

question in parameterized complexity.
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additions and one multiplication. However, to respect the disjointness condition,
the straightforward algorithm appears to require about |A||B| ring operations
and tests of disjointness.

In many cases, we fortunately can do better by applying the principle of
inclusion and exclusion. The basic idea is to compute the sum over pairs (A,B)
with A ∩ B = ∅ by subtracting the sum over pairs with A ∩ B = X 6= ∅ from
the sum over pairs with no constraints. For a precise treatment, it is handy to
denote by N the union of all the members in the families A and B, and extend
the functions α and β to all subsets of N by letting them evaluate to 0 outside
A and B, respectively. We also use the Iverson bracket notation: [P ] = 1 if P is
true, and [P ] = 0 otherwise. Now, by elementary manipulation,

α� β =
∑
A

∑
B

[A ∩B = ∅]α(A)β(B)

=
∑
A

∑
B

∑
X

(−1)|X| [X ⊆ A ∩B]α(A)β(B)

=
∑
X

(−1)|X|
∑
A

∑
B

[X ⊆ A] [X ⊆ B]α(A)β(B)

=
∑
X

(−1)|X|
( ∑

A⊇X

α(A)
)( ∑

B⊇X

β(B)
)
. (1)

Here we understand that A, B, and X run through all subsets of N unless other-
wise specified. Note also that the second equality holds because every nonempty
set has exactly as many subsets of even size as subsets of odd size.

To analyze the complexity of evaluating the inclusion–exclusion expression
(1), we define the lower set of a set family F, denoted by ↓F, as the family
consisting of all the sets in F and their subsets. We first observe that in (1) it
suffices to let X run over the intersection of ↓A and ↓B, for any other X has no
supersets in A or in B. Second, we observe that the values

α̂(X) .=
∑

A⊇X

α(A) ,

for all X ∈ ↓A, can be computed in a total of |↓A|n ring and set operations, as
follows. Let a1, a2, . . . , an be the n elements of N . For any i = 0, 1, . . . , n and
X ∈ ↓A define α̂i(X) as the sum of the α(A) over all sets A ∈ ↓A with A ⊇ X
and A∩{a1, a2, . . . , ai} = X ∩{a1, a2, . . . , ai}. In particular, α̂n(X) = α(X) and
α̂0(X) = α̂(X). Furthermore, by induction on i one can prove the recurrence

α̂i−1(X) = [ai 6∈ X] α̂i(X) + [X ∪ {ai} ∈ ↓A] α̂i(X ∪ {ai}) ;

for details, see closely related recent work on trimmed zeta transform and Moe-
bius inversion [6, 7]. Thus, for each i, the values α̂i(X) for all X ∈ ↓A can be
computed with |↓A| ring and set operations.

We have shown the following.
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Theorem 1. The Disjoint Sum problem can be solved with O
(
n ( |↓A|+ |↓B| )

)
ring and set operations, and with a storage for O

(
|↓A| + |↓B|

)
ring elements,

where n is the number of distinct elements covered by the members of A and B.

3 Paths

Consider paths in an undirected graph with vertex set V and edge set E. Define
a k-edge path as a sequence of k + 1 distinct vertices v0v1 · · · vk such that the
adjacent vertices vi−1 and vi are connected by an edge vi−1vi in E, for i =
1, 2, . . . , k. We call the set {v0, v1, . . . , vk} the support of the path and v0 and vk

the ends of the path. For any vertex v and a subset of j vertices S ⊆ V , let pj(S, v)
denote the number of j-edge paths with an end v and support S ∪ {v}. Clearly,
the values can be computed by dynamic programming using the recurrence

p0(S, v) = [S = ∅] , pj(S, v) =
∑
u∈S

pj−1(S \ {u}, u) [uv ∈ E] for j > 0 .

Alternatively, one may use the inclusion–exclusion formula [17, 20]

pj(S, v) =
∑
Y⊆S

(−1)|S\Y | wj(Y, v) ,

where wj(Y, v) is the number of j-edge walks starting from v and visiting some
vertices of Y , that is, sequences u0u1 · · ·uj with u0 = v, each ui−1ui ∈ E, and
u1, u2, . . . , uj ∈ Y . Note that for any given Y , v, and j, the term wj(Y, v) can
be computed in time polynomial in n. Using either of the above two formulas,
the values pj(S, v) for all v ∈ V and sets S ⊆ V \ {v} of size j, can be computed
in time O∗

((
n
↓j
))

; here and henceforth,
(

q
↓r
)

denotes the sum of the binomial
coefficients

(
q
0

)
+
(
q
1

)
+ · · ·+

(
q
r

)
. In particular, the number of k-edge paths in the

graph is obtained as the sum of pk(S, v) over all v ∈ V and S ⊆ V \ {v} of size
k, in time O∗

((
n
↓k
))

.
However, meet-in-the-middle yields a much faster algorithm. Assuming for

simplicity that k is even, the path has a mid-vertex, vk/2, at which the
path uniquely decomposes into two k/2-edge paths, namely v0v1 · · · vk/2 and
vk/2vk/2+1 · · · vk, with almost disjoint supports. Thus, the number of k-edge
paths is obtained as the sum of the products

pk/2(S, v) pk/2(T, v)
/

2

over all vertices v ∈ V and disjoint pairs of subsets S, T ⊆ V \ {v} of size k/2.
Applying Theorem 1, once for each v ∈ V , with A

.= B
.= {S ⊆ V \ {v} : |S| =

k/2} and α
.= β

.= pk/2 gives the following.

Theorem 2. The k-edge paths in a given graph on n vertices can be counted in
time O∗

((
n

k/2

))
.
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In the remainder of this section we present a polynomial-space variant of the
above described algorithm. Let the mid-vertex v be fixed. Then the task is to
compute, for each X ⊆ V \ {v} of size at most k/2, the sum∑

S⊇X

pk/2(S, v) =
∑
S⊇X

∑
Y⊆S

(−1)|S\Y | wk/2(Y, v)

in space polynomial in n and k. If done in a straightforward manner, the running
time, ignoring polynomial factors, becomes proportional to the number of triplets
(X,S, Y ) with X,Y ⊆ S ⊆ V \ {v} and |S| = k/2. This number is

(
n−1
k/2

)
2k

because there are
(
n−1
k/2

)
choices for S and for any fixed S, there are 2k/2 choices

for X and 2k/2 choices for Y .
A faster algorithm is obtained by reversing the order of summation:∑

S⊇X

pk/2(S, v) =
∑
Y

wk/2(Y, v)
∑
S

(−1)|S\Y | [X,Y ⊆ S]

=
∑
Y

wk/2(Y, v) (−1)k/2−|Y |
(
n− |X ∪ Y |
k/2− |X ∪ Y |

)
;

here Y and S run through all subsets of V \ {v} of size at most k/2 and exactly
k/2, respectively. The latter equality holds because S is of size k/2 and contains
X ∪ Y . It remains to find in how many ways one can choose the sets X and Y
such that the union U

.= X ∪ Y is of size at most k/2. This number is

k/2∑
s=0

(
n− 1
s

)
3s ≤ 3

2

(
n− 1
k/2

)
3k/2 ,

because there are
(
n−1

s

)
ways to choose U of size s, and one can put each element

in U either to X or Y or both.

Theorem 3. The k-edge paths in a given graph on n vertices can be counted in
time O∗

(
3k/2

(
n

k/2

))
in space polynomial in n and k.

4 Set Packing

Next, consider packings in a set family F consisting of subsets of a universe N .
We will assume that each member of F is of size m. A k-packing in F is a set of k
mutually disjoint members of F. The members F1, F2, . . . , Fk of a k-packing can
be ordered in k! different ways to an ordered k-packing F1F2 · · ·Fk. Define the
support of the ordered k-packing as the union of its members. For any S ⊆ N ,
let πj(S) denote the number of ordered j-packings in F with support S. The
values can be computing by dynamic programming using the recurrence

π0(S) = [S = ∅] , πj(S) =
∑
F⊆S

πj−1(S \ F ) [F ∈ F] for j > 0 .
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Alternatively, one may use the inclusion–exclusion formula

πj(S) =
∑
Y⊆S

(−1)|S\Y |
( ∑

F⊆Y

[F ∈ F]
)j

(here we use the assumption that every member of F is of size m) [5, 6]. Using
the inclusion–exclusion formula, the values πj(S) for all S ⊆ N of size mj can be
computed in time O∗

((
n
↓mj

))
, where n is the cardinality of N ; a straightforward

implementation of the dynamic programming algorithm yields the same bound,
provided that m is a constant. In particular, the number of k-packings in F is
obtained as the sum of πk(S)

/
k! over all S ⊆ N of size mk, in time O∗

((
n
↓mk

))
.

Again, meet-in-the-middle gives a much faster algorithm. Assuming for sim-
plicity that k is even, we observe that the ordered k-packing decomposes uniquely
into two ordered k/2-packings F1F2 · · ·Fk/2 and Fk/2+1Fk/2+2 · · ·Fk with dis-
joint supports. Thus the number of ordered k-packings in F is obtained as the
sum of the products

πk/2(S)πk/2(T )
/

2

over all disjoint pairs of subsets S, T ⊆ N of size mk/2. Applying Theorem 1
with A

.= B
.= {S ⊆ N : |S| = mk/2} and α

.= β
.= πk/2 gives the following.

Theorem 4. The k-packings in a given family of m-element subsets of an n-
element set can be counted in time O∗

((
n

mk/2

))
.

We next present a polynomial-space variant. The task is, in essence, to com-
pute for each X ⊆ N of size at most mk/2 the sum∑

S⊇X

πk/2(S) =
∑
S⊇X

∑
Y⊆S

(−1)|S\Y |
( ∑

F⊆Y

[F ∈ F]
)k/2

in space polynomial in n, k, and m.
As with counting paths in the previous section, a faster than the straightfor-

ward algorithm is obtained by reversing the order of summation:∑
S⊇X

πk/2(S) =
∑
Y

( ∑
F⊆Y

[F ∈ F]
)k/2∑

S

(−1)|S\Y |[X,Y ⊆ S]

=
∑
Y

( ∑
F⊆Y

[F ∈ F]
)k/2

(−1)k/2−|Y |
(

n− |X ∪ Y |
mk/2− |X ∪ Y |

)
;

here Y and S run through all subsets of N of size at most mk/2 and exactly
mk/2, respectively. It remains to find the number of triplets (X,Y, F ) satisfying
|X ∪ Y | ≤ mk/2, |F | = m, and F ⊆ Y . This number is

mk/2∑
s=m

(
n

s

)(
s

m

)
2m3s−m <

3
2

(
n

mk/2

)(
mk/2
m

)
2m3mk/2−m

≤ 3
2

(
n

mk/2

)
5mk/2 , (2)
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because there are
(

n
mk/2

)
choices for the union U .= X ∪Y of size s, within which

there are
(

s
m

)
choices for F ; the elements in F can be put to only Y or to both

X and Y , whereas each of the remaining s−m elements in U is put to either X
or Y or both.

Theorem 5. The k-packings in a given family of m-element subsets of an n-
element set can be counted in time O∗

(
5mk/2

(
n

mk/2

))
in space polynomial in n,

k, and m.

We remark that the upper bound (2) is rather crude for small values of m.
In particular, provided that m is a constant, we can replace the constant 5 by 3.

Corollary 1. The k-packings in a given family of 2-element subsets of an n-
element set can be counted in time O∗

(
3k
(
n
k

))
in space polynomial in n and

k.
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