Abstract
Human has always been a part of the computational loop. The goal of human-centered multimedia computing is to explicitly address human factors at all levels of multimedia computations. In this chapter, we have incorporated a novel visual analytics framework to design a human-centered multimedia computing environment. In the loop of image classifier training, our visual analytics framework can allow users to obtain better understanding of the hypotheses, thus they can further incorporate their personal preferences to make more suitable hypotheses for achieving personalized classifier training. In the loop of image retrieval, our visual analytics framework can also allow users to gain a deep insights of large-scale image collections at the first glance, so that they can specify their queries more precisely and obtain the most relevant images quickly. By supporting interactive image exploration, users can express their query intentions explicitly and our system can recommend more relevant images adaptively.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Thomas, J., Cook, K.A.: Illuminating the Path: The Research and Development Agenda for Visual Analytis. IEEE, Los Alamitos (2005)
Ma, W.-Y., Manjunath, B.S.: Texture features and learning similarity. In: Proc. IEEE CVPR, pp. 425–430 (1996)
Chang, T., Kou, C.: Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. on Image Processing 2 (1993)
Lowe, D.: Distinctive image features from scale invariant keypoints. Intl. Journal of Computer Vision 60, 91–110 (2004)
Quelhas, P., Monay, F., Odobez, J.-M., Gatica-Perez, D., Tuytelaars, T., Van Gool, L.J.: Modeling scenes with local descriptors and latent aspects. In: Proc. IEEE ICCV, pp. 883–890 (2005)
Lamping, J., Rao, R.: The hyperbolic browser: A focus+content technique for visualizing large hierarchies. Journal of Visual Languages and Computing 7, 33–55 (1996)
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. on PAMI (2000)
Rui, Y., Huang, T.S., Chang, S.-F.: Image retrieval: Current techniques, promising directions and open issues. Journal of Visual Communication and Image Representation 10, 39–62 (1999)
Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: WWW (1998)
Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Boston (1998)
Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10(5), 1299–1319 (1998)
Fan, J., Gao, Y., Luo, H.: Integrating concept ontology and multi-task learning to achieve more effective classifier training for multi-level image annotation. IEEE Trans. on Image Processing 17(3) (2008)
Fan, J., Gao, Y., Luo, H., Jain, R.: Mining multi-level image semantics via hierarchical classification. IEEE Trans. on Multimedia 10(1), 167–187 (2008)
Fan, J., Luo, H., Gao, Y., Jain, R.: Incorporating concept ontology to boost hierarchical classifier training for automatic multi-level video annotation. IEEE Trans. on Multimedia 9(5), 939–957 (2007)
Fan, J., Yau, D.K.Y., Elmagarmid, A.K., Aref, W.G.: Automatic image segmentation by integrating color edge detection and seeded region growing. IEEE Trans. on Image Processing 10(10), 1454–1466 (2001)
Luo, H., Fan, J., Yang, J., Ribarsky, W., Satoh, S.: Large-scale new video classification and hyperbolic visualization. In: IEEE Symposium on Visual Analytics Science and Technology (VAST 2007), pp. 107–114 (2007)
Luo, H., Fan, J., Yang, J., Ribarsky, W., Satoh, S.: Exploring large-scale video news via interactive visualization. In: IEEE Symposium on Visual Analytics Science and Technology (VAST 2006), pp. 75–82 (2006)
Fan, J., Keim, D.A., Gao, Y., Luo, H., Li, Z.: JustClick: Personalized image recommendation via exploratory search from large-scale Flickr images. IEEE Trans. on Circuits and Systems for Video Technology 18(8) (2008)
Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: An overview with application to learning methods, Technical Report, CSD-TR-03-02, University of London (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Gao, Y., Yang, C., Shen, Y., Fan, J. (2009). Incorporate Visual Analytics to Design a Human-Centered Computing Framework for Personalized Classifier Training and Image Retrieval. In: Ras, Z.W., Ribarsky, W. (eds) Advances in Information and Intelligent Systems. Studies in Computational Intelligence, vol 251. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04141-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-04141-9_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04140-2
Online ISBN: 978-3-642-04141-9
eBook Packages: EngineeringEngineering (R0)