Skip to main content

A Vision and Agenda for Theory Provenance in Scientific Publishing

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5667))

Included in the following conference series:

  • 482 Accesses

Abstract

Primary motivations for effective data and process provenance in science are to facilitate validation and reproduction of experiments and to assist in the interpretation of data-analysis outcomes. Central to both these aims is an understanding of the ideas and hypotheses that the data supports, and how those ideas fit into the wider scientific context. Such knowledge consists of the collection of relevant previous ideas and experiments from the body of scientific knowledge, or, more specifically, how those ideas and hypotheses evolved, the steps in that evolution, and the experiments and results used to support those steps. This information we term the provenance of ideas or theory provenance. We propose an integrated approach to scientific knowledge management, combining data, process and theory provenance, providing full transparency for effective verification and review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foster, I., Kesselman, C. (eds.): The Grid 2: Blueprint for a New Computing Infrastructure. The Morgan Kaufmann Series in Computer Architecture and Design. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  2. Moreau, L., et al.: Special Issue: The First Provenance Challenge. Concurrency and Computation: Practice and Experience 20(5), 409–418 (2008)

    Article  Google Scholar 

  3. Miles, S., Deelman, E., Groth, P., Vahi, K., Mehta, G., Moreau, L.: Connecting scientific data to scientific experiments with provenance. In: IEEE International Conference on e-Science and Grid Computing, December 2007, pp. 179–186 (2007)

    Google Scholar 

  4. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD Rec. 34(3), 31–36 (2005)

    Article  Google Scholar 

  5. Bose, R., Frew, J.: Lineage retrieval for scientific data processing: a survey. ACM Comput. Surv. 37(1), 1–28 (2005)

    Article  Google Scholar 

  6. Zhao, J., Goble, C., Stevens, R., Bechhofer, S.: Semantically linking and browsing provenance logs for E-science. In: Bouzeghoub, M., Goble, C.A., Kashyap, V., Spaccapietra, S. (eds.) ICSNW 2004. LNCS, vol. 3226, pp. 158–176. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Quirk, J.: Computational science, same old silence, same old mistakes, something more is needed .... In: Adaptive Mesh Refinement - Theory and Applications. Lecture Notes in Computational Science and Engineering, vol. 41, pp. 3–28. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Shum, S., De Roure, D., Eisenstadt, M., Shadbolt, N., Tate, A.: CoAKTinG: Collaborative Advanced Knowledge Technologies in the Grid. In: 2nd Workshop Advanced Collaborative Environments, http://www.aktors.org/coakting/

  9. Myers, J., Mendoza, E., Hoopes, B.: A Collaborative Electronic Notebook. In: Proceedings of the IASTED International Conference on Internet and Multimedia Systems and Applications (IMSA 2001), August 2001, pp. 13–16. ACTA Press (2001)

    Google Scholar 

  10. Myers, J.D., Chappell, A., Elder, M., Geist, A., Schwidder, J.: Re-integrating the research record. Computing in Science and Engineering 5(3), 44–50 (2003)

    Article  Google Scholar 

  11. Zhuge, H.: The Knowledge Grid. World Scientific, Singapore (2004)

    Book  Google Scholar 

  12. CiteSeer: http://citeseer.ist.psu.edu/ or http://citeseersx.ist.psu.edu/

  13. GoogleScholar: http://scholar.google.com/

  14. ISI: Isi web of knowledge, http://apps.isiknowledge.com/

  15. de Waard, A.: Science publishing and the semantic web, or: Why are you reading this on paper. In: European Conference on the Semantic Web (2005)

    Google Scholar 

  16. Carr, L., Hall, W., Bechhofer, S., Goble, C.: Conceptual linking: ontology-based open hypermedia. In: WWW 2001: Proceedings of the 10th international conference on World Wide Web, pp. 334–342. ACM, New York (2001)

    Google Scholar 

  17. W3C: Naming and addressing: Uris, urls, ..., http://www.w3.org/Addressing/

  18. DOI: The digital object identifier system, http://www.doi.org/

  19. MIZAR: The mizar project for formalized representation of mathematics, http://www.mizar.org/

  20. IsarMathLib: Library of formalized mathematics for isabelle/isar (zf logic), http://savannah.nongnu.org/projects/isarmathlib

  21. Stevens, R., Goble, C., Bechhofer, S.: Ontology-based knowledge representation for bioinformatics. Briefings in Bioinformatics 1(4), 398–414 (2000)

    Article  Google Scholar 

  22. Stevens, R.D., Robinson, A.J., Goble, C.A.: myGrid: personalised bioinformatics on the information grid. Bioinformatics 19(suppl. 1), i302–i304 (2003)

    Article  Google Scholar 

  23. EMBL-EBI: Biological ontology databases. European Bioinformatics Institute, an Outstation of the European Molecular Biology Laboratory, http://www.ebi.ac.uk/Databases/ontology.html

  24. Hu, X., Lin, T., Song, I., Lin, X., Yoo, I., Lechner, M., Song, M.: Ontology-Based Scalable and Portable Information Extraction System to Extract Biological Knowledge from Huge Collection of Biomedical Web Documents. In: Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 77–83. IEEE Computer Society, Washington (2004)

    Google Scholar 

  25. Fox, P., McGuinness, D., Raskin, R., Sinha, A.: Semantically-Enabled Scientific Data Integration. In: US Geological Survey Scientific Investigations Report, vol. 5201 (2006), http://sesdi.hao.ucar.edu/

  26. Zhang, X., Hu, C., Zhao, Q., Zhao, C.: Semantic data integration in materials science based on semantic model. In: IEEE International Conference on e-Science and Grid Computing, December 2007, pp. 320–327 (2007)

    Google Scholar 

  27. Bao, J., Hu, Z., Caragea, D., Reecy, J., Honavar, V.: A tool for collaborative construction of large biological ontologies. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 191–195. Springer, Heidelberg (2006)

    Google Scholar 

  28. Lin, H.N., Tseng, S.S., Weng, J.F., Lin, H.Y., Su, J.M.: An iterative, collaborative ontology construction scheme. In: Second International Conference on Innovative Computing, Information and Control, 2007. ICICIC 2007, September 2007, p. 150 (2007)

    Google Scholar 

  29. Xexeo, G., de Souza, J., Vivacqua, A., Miranda, B., Braga, B., Almentero, B., D’ Almeida Jr., J.N., Castilho, R.: Peer-to-peer collaborative editing of ontologies. In: The 8th International Conference on Computer Supported Cooperative Work in Design, 2004. Proceedings, May 2004, vol. 2, pp. 186–190 (2004)

    Google Scholar 

  30. Roure, D., Jennings, N., Shadbolt, N.: Research agenda for the semantic grid: a future escience infrastructure, vol. 9. National e-Science Centre, Edinburgh (2001)

    Google Scholar 

  31. Roure, D.D., Jennings, N.R., Shadbolt, N.R.: The semantic grid: A future e-science infrastructure. In: Berman, F., Fox, G., Hey, A.J.G. (eds.) Grid Computing, pp. 437–470. Wiley, Chichester (2003)

    Chapter  Google Scholar 

  32. Goble, C.: Putting semantics into e-science and grids. In: First International Conference on e-Science and Grid Computing, 2005, December 2005, p. 1 (2005)

    Google Scholar 

  33. Siddiqui, M., Villazon, A., Fahringer, T.: Semantic-based on-demand synthesis of grid activities for automatic workflow generation. In: IEEE International Conference on e-Science and Grid Computing, December 2007, pp. 43–50 (2007)

    Google Scholar 

  34. Somasundaram, T., Balachandar, R., Kandasamy, V., Buyya, R., Raman, R., Mohanram, N., Varun, S.: Semantic-based grid resource discovery and its integration with the grid service broker. In: International Conference on Advanced Computing and Communications, 2006. ADCOM 2006, December 2006, pp. 84–89 (2006)

    Google Scholar 

  35. Andronico, G., Barbera, R., Falzone, A.: Grid portal based data management for lattice qcd. In: 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, 2004. WET ICE 2004, pp. 347–351. IEEE, Los Alamitos (2004)

    Google Scholar 

  36. Berriman, B., Kirkpatrick, D., Hanisch, R., Szalay, A., Williams, R.: Large Telescopes and Virtual Observatory: Visions for the Future. In: 25th meeting of the IAU, Joint Discussion, vol. 8, p. 17 (2003)

    Google Scholar 

  37. Fox, P., McGuinness, D.L., Middleton, D., Cinquini, L., Darnell, J.A., Garcia, J., West, P., Benedict, J., Solomon, S.: Semantically-enabled large-scale science data repositories. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 792–805. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  38. Foster, I.: What is the Grid? A Three Point Checklist. Grid Today 1(6), 22–25 (2002)

    Google Scholar 

  39. Bartolo, L.M., Cole, T.W., Giersch, S., Wright, M.: NSF/NSDL Workshop on Scientific Markup Languages. D-Lib Magazine 1(11) (2005)

    Google Scholar 

  40. Levesque, H., Brachman, R.: Expressiveness and tractability in knowledge representation and reasoning 1. Computational Intelligence 3(1), 78–93 (1987)

    Article  Google Scholar 

  41. W3C: Web ontology language, http://www.w3.org/TR/owl-features/

  42. Mccune, W.: Solution of the robbins problem. Journal of Automated Reasoning 19(3), 263–276 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Colton, S.: Computational discovery in pure mathematics. In: Džeroski, S., Todorovski, L. (eds.) Computational Discovery 2007. LNCS (LNAI), vol. 4660, pp. 175–201. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wood, I., Larson, J.W., Gardner, H. (2009). A Vision and Agenda for Theory Provenance in Scientific Publishing. In: Chen, L., Liu, C., Liu, Q., Deng, K. (eds) Database Systems for Advanced Applications. DASFAA 2009. Lecture Notes in Computer Science, vol 5667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04205-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04205-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04204-1

  • Online ISBN: 978-3-642-04205-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics