Abstract
This paper presents a Text Summarisation approach, which combines three different features (Word frequency, Textual Entailment, and The Code Quantity Principle) in order to produce extracts from newswire documents in English. Experiments shown that the proposed combination is appropriate for generating summaries, improving the system’s performance by 10% over the best DUC 2002 participant. Moreover, a preliminary analysis of the suitability of these features for domain-independent documents has been addressed obtaining encouraging results, as well.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Spärck Jones, K.: Automatic summarising: The state of the art. Information Processing & Management 43, 1449–1481 (2007)
Dunlavy, D.M., O’Leary, D.P., Conroy, J.M., Schlesinger, J.D.: QCS: A system for querying, clustering and summarizing documents. Information Processing & Management 43, 1588–1605 (2007)
Yang, X.P., Liu, X.R.: Personalized multi-document summarization in information retrieval. In: International Conference on Machine Learning and Cybernetics, vol. 7, pp. 4108–4112 (2008)
Radev, D.R., Otterbacher, J., Winkel, A., Blair-Goldensohn, S.: Newsinessence: summarizing online news topics. Communications of the ACM 48, 95–98 (2005)
Steinberger, J., Jezek, K., Sloup, M.: Web topic summarization. In: Proceedings of the 12th International Conference on Electronic Publishing (ELPUB), pp. 322–334 (2008)
Titov, I., McDonald, R.: A joint model of text and aspect ratings for sentiment summarization. In: Proceedings of ACL 2008: HLT, Columbus, Ohio, pp. 308–316 (2008)
Stede, M., Bieler, H., Dipper, S., Suriyawongkul, A.: Summar: Combining linguistics and statistics for text summarization. In: 17th European Conference on Artificial Intelligence, vol. 141, pp. 827–828 (2006)
Luhn, H.P.: The automatic creation of literature abstracts. In: Mani, I., Maybury, M. (eds.) Advances in Automatic Text Summarization, pp. 15–22. MIT Press, Cambridge (1958)
Nenkova, A., Vanderwende, L., McKeown, K.: A compositional context sensitive multi-document summarizer: exploring the factors that influence summarization. In: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 573–580 (2006)
Lloret, E., Ferrández, O., Muñoz, R., Palomar, M.: A Text Summarization Approach Under the Influence of Textual Entailment. In: Proceedings of the 5th International Workshop on Natural Language Processing and Cognitive Science (NLPCS 2008), pp. 22–31 (2008)
Glickman, O.: Applied Textual Entailment. PhD thesis. Bar Ilan University (2006)
Harabagiu, S., Hickl, A., Lacatusu, F.: Satisfying information needs with multi-document summaries. Information Processing & Management 43, 1619–1642 (2007)
Tatar, D., Tamaianu-Morita, E., Mihis, A., Lupsa, D.: Summarization by logic segmentation and text entailment. In: Gelbukh, A. (ed.) CICLing 2008. LNCS, vol. 4919, pp. 15–26. Springer, Heidelberg (2008)
Ferrández, O., Micol, D., Muñoz, R., Palomar, M.: A perspective-based approach for solving textual entailment recognition. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pp. 66–71 (2007)
Givón, T.: A functional-typological introduction, II. John Benjamins, Amsterdam (1990)
Lloret, E., Palomar, M.: Challenging issues of automatic summarization: Relevance detection and quality-based evaluation. Informatica (Forthcoming 2009)
Mittal, V., Kantrowitz, M., Goldstein, J., Carbonell, J.: Selecting text spans for document summaries: heuristics and metrics. In: Proceedings of the 16th national conference on Artificial intelligence and the eleventh Innovative applications of artificial intelligence conference innovative applications of artificial intelligence, pp. 467–473 (1999)
Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Proceedings of ACL Text Summarization Workshop, pp. 74–81 (2004)
Steinberger, J., Poesio, M., Kabadjov, M.A., Ježek, K.: Two uses of anaphora resolution in summarization. Information Processing & Management 43, 1663–1680 (2007)
Plaza, L., DÃaz, A., Gervás, P.: Concept-graph based biomedical automatic summarization using ontologies. In: Proceedings of the 3rd Textgraphs workshop on Graph-based Algorithms for Natural Language Processing, Manchester, UK, pp. 53–56 (2008)
Cesarano, C., Mazzeo, A., Picariello, A.: A system for summary-document similarity in notary domain. In: International Workshop on Database and Expert Systems Applications, pp. 254–258 (2007)
Kazantseva, A.: An approach to summarizing short stories. In: Proceedings of the Student Research Workshop at the 11th Conference of the European Chapter of the Association for Computational Linguistics (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lloret, E., Palomar, M. (2009). A Gradual Combination of Features for Building Automatic Summarisation Systems. In: Matoušek, V., Mautner, P. (eds) Text, Speech and Dialogue. TSD 2009. Lecture Notes in Computer Science(), vol 5729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04208-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-04208-9_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04207-2
Online ISBN: 978-3-642-04208-9
eBook Packages: Computer ScienceComputer Science (R0)