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Abstract. We explore the problem of automated reasoning about the non-
disjoint combination of theories that share set variables and operations. We prove
a combination theorem and apply it to show the decidability of the satisfiability
problem for a class of formulas obtained by applying propositional operations to
quantified formulas belonging to several expressive decidable logics.

1 Introduction

Automated abstraction techniques such as predicate abstraction are among the most
promising approaches for verifying systems with large state spaces [14,15]. Such tech-
niques were enabled by the recent progress in SAT and SMT solvers [2, 6, 10, 24]. The
range of verification problems that are amenable to such approaches depends on the
expressive power of the logics supported by the SMT solvers. Current SMT solvers
implement the disjoint combination of quantifier-free theories, in essence following the
approach pioneered by Nelson and Oppen [26]. Such solvers serve as decision pro-
cedures for quantifier-free formulas, typically containing uninterpreted function sym-
bols, linear arithmetic, and bitvectors. The limited expressiveness of SMT prover logics
translates into a limited class of properties that automated verification tools can handle.

To enable broader applications of automated verification techniques, this paper con-
siders decision procedures for the combination of quantified formulas in non-disjoint
theories. The idea of combining rich theories within an expressive language has been
explored in interactive provers [3, 5, 25, 27]. Such integration efforts are very useful,
but do not result in complete decision procedures for the combined logics. The study
of completeness for non-disjoint combination is relatively recent [34, 37] and provided
foundation for the general problem. Our paper considers a particular combination of
non-disjoint theories–theories sharing operations on sets of uninterpreted elements. To
the best of our knowledge, this problem has not been considered before, despite the
usefulness of sets for reasoning about dynamically created objects and concurrent pro-
cesses.

Challenges in communicating constraints on sets. The idea of combining decision
procedures is to check the satisfiability of a conjunction of formulasA∧B by using one
decision procedure, DA, for A and another decision procedure, DB , for B. To obtain
a complete decision procedure, DA and DB must communicate to ensure that a model
found by DA and a model found by DB can be merged into a model for A∧B. Craig’s
interpolation theorem for first-order logic implies that if A ∧ B is unsatisfiable, then
there exists an interpolant I such that 1) A → I is valid 2) I ∧ B is unsatisfiable, and
3) I is a (potentially quantified) first-order formula containing only predicate symbols
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and variables common to A and B. The interpolant I can be used to communicate
the information between DA and DB . When A and B belong to disjoint theories, I
contains equalities as the only kind of atomic formulas. The class of such formulas
admits quantifier elimination, so there are only finitely many non-equivalent formulas
I , making it easier to construct a complete combined decision procedure.

The combination problem is more difficult for formulas that share sets of elements,
because there are infinitely many constraints on sets definable in typical logics. For
example, for every non-negative integer K, most logics can express the property that a
shared set has exactlyK elements. The set of possible interpolants I is thus not bounded
by the number of symbols shared between A and B, but depends also on the structure
of formulas A and B.
Decision procedure based on projections. In this situation we suggest that DA com-
putes the projection SA of A onto shared set variables. This projection is equivalent to
existentially quantifying over predicates and variables appearing in A but not in B, and
corresponds to the strongest interpolant. DB can similarly compute the projection SB
of B. This reduces the problem to checking the satisfiability of A ∧ B to satisfiability
of a formula with sets SA ∧ SB . (Alternatively, DB could attempt to directly check
SA ∧B.)
A logic for shared constraints on sets. The logic of sets used to express the projec-
tions SA and SB is a key parameter of such a combination approach, and depends on the
logics of formulas A, B. Inspired by verification of linked data structures, we consider
as the logics for A,B weak monadic second-order logic of two successors WS2S [33],
two-variable logic with counting C2 [13, 28, 32], Bernayes-Schönfinkel class of first-
order logic [4], and BAPA [21]. Remarkably, in many of these cases, the smallest logic
needed to express the projection formulas has the expressive power of Boolean Algebra
with Presburger Arithmetic (BAPA) [22], Figure 4. We also show that the decision pro-
cedures for these logics can be naturally extended to compute a reduction to BAPA that
preserves constraints on set variables. The existence of these reductions, along with
good properties of BAPA (quantifier elimination, NP membership for quantifier-free
fragment [22]) make it an ideal candidate as a common reduction target for expressive
logics that share sets.
Contributions. We present a simple technique for showing decidability of theories that
share sets of elements, and show that the logics

1. Boolean Algebra with Presburger Arithmetic itself [7, 21, 22]
2. weak monadic second-order logic of two successors WS2S [33];
3. two-variable logic with counting C2 [32];
4. Bernays-Schönfinkel class [4]
5. quantifier-free multisets with cardinality constraints [31]

meet the conditions of the technique, which allows the use of their combination in
verification. (An earlier version of these results was presented in [23].)

2 Example: Verifying a Code Fragment

Our example illustrates a formula arising from verifying unbounded linked data struc-
tures, and explains why our combination technique is complete for proving the validity
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class Node {Node left,right; Object data;}
class Tree {

private static Node root;
private static int size; /∗ :
private static specvar nodes :: objset;
vardefs ”nodes=={x. (root,x) ∈ {(x,y). left x = y ∨ right x = y}∗}”;
private static specvar content :: objset ;
vardefs ”content=={x. ∃ n. n 6= null ∧ n ∈ nodes ∧ data n = x} ” ∗/

private void insertAt (Node p, Object e) /∗ :
requires ”tree [ left , right ] ∧ nodes ⊆ Object.alloc ∧ size = card content ∧

e /∈ content ∧ e 6= null ∧ p ∈ nodes ∧ p 6= null ∧ left p = null”
modifies nodes,content,left, right ,data,size
ensures ”size = card content” ∗/
{

Node tmp = new Node();
tmp.data = e;
p. left = tmp;
size = size + 1;

}
}

Fig. 1. Fragment of insertion into a tree

of an interesting class of such formulas. Figure 1 shows our example, which is a frag-
ment of Java code for insertion into a binary search tree, factored out into a separate
insertAt method (we also verified the full code, containing loops). The search tree
has fields (left, right) that form a tree, and field data, which is not necessarily an
injective function (an element may be stored multiple times in the tree). The insertAt
method is meant to be invoked when the insertion procedure has found a node p that
has no left child. It inserts the given object e into a fresh node tmp that becomes the
new left child of p.

Specification and verification in Jahob. In addition to Java statements, the example
in Fig. 1 contains preconditions and postconditions, written in the notation of the Jahob
verification system [20, 36, 38]. The vardefs notation introduces two sets: 1) the set of
auxiliary objects nodes , denoting the Node objects stored in the binary tree, and 2)
the set content denoting the useful content of the tree. To verify such examples in the
previously reported approach [38], the user of the system had to manually provide the
definitions of such sets, and to manually introduce certain lemmas describing changes
to these sets. Our decidability result means that there is no need to manually introduce
such lemmas.

Decidability of the verification condition. Figure 2 shows the verification condition
formula for method insertAt. The validity of this formula implies that invoking a
method in a state satisfying the precondition results in a state that satisfies the postcon-
dition of insertAt. The formula contains the transitive closure operator, quantifiers,
set comprehensions, and the cardinality operator. Nevertheless, there is a (syntactically
defined) decidable class of formulas that contains the verification condition in Fig. 2.
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tree [ left , right ] ∧ left p = null ∧ p ∈ nodes ∧
nodes={x. (root,x) ∈ {(x,y). left x = y| right x = y}ˆ∗} ∧
content={x. ∃ n. n 6= null ∧ n ∈ nodes ∧ data n = x} ∧
e /∈ content ∧ nodes ⊆ alloc ∧
tmp /∈ alloc ∧ left tmp = null ∧ right tmp = null ∧
data tmp = null ∧ (∀ y. data y 6= tmp) ∧
nodes1={x. (root,x) ∈ {(x,y). ( left (p:=tmp)) x = y) | right x = y} ∧
content1={x. ∃ n. n 6= null ∧ n ∈ nodes1 ∧ (data(tmp:=e)) n = x} →

card content1 = card content + 1

Fig. 2. Verification condition for Fig. 1

SHARED SETS: nodes, nodes1, content, content1, {e}, {tmp}
WS2S FRAGMENT:
tree [ left , right ] ∧ left p = null ∧ p ∈ nodes ∧ left tmp = null ∧ right tmp = null ∧
nodes={x. (root,x) ∈ {(x,y). left x = y| right x = y}ˆ∗} ∧
nodes1={x. (root,x) ∈ {(x,y). ( left (p:=tmp)) x = y) | right x = y}

CONSEQUENCE: nodes1=nodes ∪ {tmp}
C2 FRAGMENT:

data tmp = null ∧ (∀ y. data y 6= tmp) ∧ tmp /∈ alloc ∧ nodes ⊆ alloc ∧
content={x. ∃ n. n 6= null ∧ n ∈ nodes ∧ data n = x} ∧
content1={x. ∃ n. n 6= null ∧ n ∈ nodes1 ∧ (data(tmp:=e)) n = x}

CONSEQUENCE: nodes1 6= nodes ∪ {tmp} ∨ content1 = content ∪ {e}
BAPA FRAGMENT: e /∈ content ∧ card content1 6= card content + 1
CONSEQUENCE: e /∈ content ∧ card content1 6= card content + 1

Fig. 3. Separated conjuncts for negation of Fig. 2, with consequences about shared sets

This decidable class is a set-sharing combination of three decidable logics, and can be
decided using the method we present in this paper.

To understand the method for proving the formula in Fig. 2, consider the prob-
lem of showing the unsatisfiability of the negation of the formula. Figure 3 shows the
conjuncts of the negation, grouped according to three decidable logics to which the
conjuncts belong: 1) weak monadic second-order logic of two successors WS2S [33],
2) two-variable logic with counting C2 [32], and 3) Boolean Algebra with Presburger
Arithmetic (BAPA) [7, 21, 22]. For the formula in each of the fragments, Fig. 3 also
shows a consequence formula that contains only shared sets and statements about their
cardinalities. (We represent elements as singleton sets, so we admit formulas sharing
elements as well. Cardinality constraints appear already with sets of elements and we
believe our approach could be combined with [19].)

A decision procedure. Note that the conjunction of the consequences of three formula
fragments is an unsatisfiable formula. This shows that the original verification condition
is valid. In general, our decidability result shows that the decision procedures of logics
such as WS2S and C2 can be naturally extended to compute strongest consequences
of formulas involving given shared sets. These consequences are expressed in BAPA,
which is decidable. One possible decision procedure for satisfiability of combined for-
mulas is 1) split the formula into fragments (belonging to WS2S, C2, or BAPA); 2) for
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each fragment compute its strongest QFBAPA consequence; 3) check the satisfiability
of the conjunction of consequences.

3 Syntax and Semantics of Formulas

Multi-sorted logic. We present our problem in multi-sorted logic with equality and dis-
joint sorts (which can naturally be viewed as a fragment of higher-order logic [1] with
a particular set of types, which we call sorts). The primitive sorts we consider include:
1) bool, interpreted as the two-element set {true, false} of booleans; 2) int, interpreted
as the set of integers Z; and 3) obj, interpreted as a non-empty set of elements. Each
variable and constant has an associated sort. We represent a function mapping elements
of sorts s1, . . . , sn into an element of sort s0 as a term of sort s1 × . . . × sn → s0.
When s1, . . . , sn are all the same sort s, we denote s1 × . . .× sn as sn. We represent a
relation between elements of sorts s1, . . . , sn as a function s1 × . . . × sn → bool. We
use set as an abbreviation for the sort obj → bool. In the formulas that we consider,
all quantified variables have one of the sorts int, obj, set. Free variables can additionaly
have sorts objn → bool for n > 1. Propositional operations connect terms of sort bool.
We write ∀x : s.F to denote a universally quantified formula where the quantified vari-
able has sort s (analogously for ∃x : s.F ). We denote by FV(F ) the set of all variables
that occur free in F and we write FVs(F ) for the free variables of sort s. The equality
symbol applies only to terms of the same sort. We can assume to have a distinct equality
symbol for each sort of interest, but we use the same symbol to denote all of them.
Structures and semantics. A structure α specifies a finite set, which is also the mean-
ing of obj, and we denote it α(obj). We focus on the case of finite α(obj) primarily for
simplicity of notation; extension to the case where domains are either finite or countable
is possible and can be done using results from [21, Section 8.1], [32, Section 5], [33].
Each structure α that interprets a set of formulas is determined by α(obj) as well as
the values α(x) for each variable x free in the set of formulas, where the sort of x is
among obj and objn → bool for n ≥ 1. When α is understood we use JXK to denote
α(X), where X denotes a sort, a term, a formula, or a set of formulas. If S is a set of
formulas then α(S) = true means α(F ) = true for each F ∈ X . In every structure
we let JboolK = {false, true}. Instead of α(F ) = true we often write simply α(F ). We
interpret terms of the sort s1× . . .× sn → s0 as total functions Js1K× . . . JsnK→ Js0K
and identify a function f : A → {false, true} with the set {x | f(x) = true}. We thus
interpret variables of the sort objn → bool as subsets of JobjKn. We interpret propo-
sitional operations ∧,∨,¬ as usual in classical logic. A quantified variable of sort s
ranges over all elements of JsK.

3.1 Boolean Algebra with Presburger Arithmetic

Figure 4 shows the syntax of Boolean Algebra with Presburger Arithmetic (BAPA)
[7, 21]. The following are the sorts of constants appearing in BAPA formulas: ⊆ :
set2 → bool, < : int2 → bool, dvdK : int → bool for each integer constant K (with
dvdK(t) denoted by K dvd t), ∅,Univ : set, singleton : obj → set (with singleton(x)
denoted as {x}), ∩,∪ : set2 → set, complement : set → set (with complement(A)
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F ::= A | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∀x:s.F | ∃x:s.F
s ::= int | obj | set
A ::= B1 = B2 | B1 ⊆ B2 | T1 = T2 | T1 < T2 | K dvdT
B ::= x | ∅ | Univ | {x} | B1 ∪B2 | B1 ∩B2 | Bc

T ::= x | K | CardUniv | T1 + T2 | K · T | card(B)

K ::= . . .−2 | −1 | 0 | 1 | 2 . . .

Fig. 4. Boolean Algebra with Presburger Arithmetic (BAPA)

denoted by Ac), K : int for each integer constant K, CardUniv : int, + : int2 → int,
mulK : int → int for each integer constant K (with mulK(t) denoted by K · t), and
card : set→ int.

Let FBAPA be the set of all formulas in Figure 4. We interpret the formulas over
structures with an arbitrary finite set JobjK. In each structure, JsetK is the set of all
subsets of JobjK. The symbol Univ denotes the universal set, that is, JUnivK = JobjK.
card(A) denotes the cardinality of the set A. CardUniv is interpreted as card(Univ).
The formula K dvd t denotes that the integer constant K divides the integer t. We note
that the condition x ∈ A can be written down in this language as {x} ⊆ A. In the rest
of this paper we only consider structures that interpret the BAPA operations as defined
above. 1

A semilinear set is a finite union of linear sets. A linear set is a set of the form
{a + k1b1 + . . . + knbn | k1, . . . , kn ∈ {0, 1, 2 . . .}} where a, b1, . . . , bn ∈ ZM .
We represent a linear set by its generating vectors a, b1, . . . , bn, and a semilinear set
by the finite set of representations of its linear sets. It was shown in [12] that a set of
integer vectors S ⊆ ZM is a solution set of a Presburger arithmetic formula P i.e.
S = {(v1, . . . , vn).P} iff S is a semilinear set.

We have the following characterization of relationships between sets expressible in
BAPA, which follows from [21].

Lemma 1 (BAPA-expressible means Venn-cardinality-semilinear). Given a finite
set U and a relation ρ ⊆ (2U )p the following are equivalent:

1. there exists a BAPA formula F whose free variables are A1, . . . , Ap such that

ρ = {(s1, . . . , sp) | {A1 7→ s1, . . . , Ap 7→ sp}(F )}

2. the following subset of ZM for M = 2p is semilinear:

{(|sc1∩sc2∩. . .∩scp|, |s1∩sc2∩. . .∩scp|, . . . , |s1∩s2∩. . .∩sp|) | (s1, . . . , sp) ∈ ρ}.

1 We note that BAPA properly extends the first-order theory of Boolean Algebras over finite
structures, which in turn subsumes the first-order logic with unary predicates and no function
symbols, because e.g. ∃x.F (x) can be simulated by ∃X.card(X)=1 ∧ F ′(X) where in F ′

e.g. P (x) is replaced by X ⊆ P .
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4 Combination by Reduction to BAPA

4.1 The Satisfiability Problem

We are interested in algorithms for the satisfiability problem of quantifier-free combi-
nations of quantified formulas that share sets of elements. More precisely, we are inter-
ested in an algorithm to determine whether there exists a structure α ∈M in which the
following formula is true

B(F1, . . . , Fn) (1)

where

1. F1, . . . , Fn are formulas with FV(Fi) ⊆ {A1, . . . , Ap, R1, . . . , Rq}
2. VS = {A1, . . . , Ap} are variables of sort set, whereas R1, . . . , Rq are the remain-

ing variables, of sorts objn → bool for n > 1 (for notational simplicity we do not
consider variables of sort obj because they can be represented as singleton sets, of
sort set);

3. each formula Fi belongs to a set of formulas Fi (in our case, one of: BAPA,
monadic second order logic over finite trees, two-variable logic with counting, or
the Bernayes-Schönfinkel class). For each Fi there is the corresponding theory Ti;

4. B(F1, . . . , Fn) denotes a formula built from F1, . . . , Fn using the propositional
operations ∧,∨ (the absence of negation is usually not a loss of generality because
in allmost all cases the Fi are closed under negation so B is the negation-normal
form of an arbitrary quantifier-free combination);

5. as the set of structures M we consider all finite multisorted models (Section 3)
satisfying the union of theories ∪ni=1Ti;

6. (set sharing condition) if i 6= j and a variable or constant x occurs both in {Fi}∪Ti
and {Fj}∪Tj , then either x ∈ VS (a shared set variable) or x is a constant of BAPA
(Section 3.1), such as ⊆.

The set sharing condition in our case means that the formulas we consider from different
theories do not share any relation variables.

4.2 Combination Theorem

The formula B in (1) is satisfiable iff one of the disjuncts in its disjunctive normal
form is satisfiable. Consider a disjunct F1 ∧ . . . ∧ Fm for m ≤ n. By definition of the
satisfiability problem 1, F1 ∧ . . . ∧ Fm is satisfiable iff there exists a structure α such
that for each 1 ≤ i ≤ m, for each G ∈ {Fi} ∪ Ti, we have α(G) = true. Because
α is given by the domain and the interpretation of its variables, let {obj 7→ u, x1 7→
v1, . . . , xn 7→ vn} denote the structure α with domain u that interprets each variable xi
as vi. Let each relation variable Ri have the sort objki → bool. Then the satisfiability
of F1 ∧ . . . ∧ Fm is equivalent to the following condition:

∃ finite set u. ∃a1, . . . , ap ⊆ u. ∃r1 ⊆ uk1 . . . . ∃rq ⊆ ukq .
∧m
i=1

{obj→ u,A1 7→ a1, . . . , Ap 7→ ap, R1 7→ r1, . . . , Rq 7→ rq}({Fi} ∪ Ti)
(2)
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By the set sharing condition, each of the variables r1, . . . , rq appears only in one con-
junct and can be moved inwards from the top level to this conjunct. Using rij to denote
the j-th variable in the i-th conjunct, we obtain the condition

∃ finite set u. ∃a1, . . . , ap ⊆ u.
∧m
i=1 Ci(u, a1, . . . , ap) (3)

where Ci(u, a1, . . . , ap) is the condition

∃ri1 . . . riwi .
{obj→ u,A1 7→ a1, . . . , Ap 7→ ap, Ri1 7→ ri1, . . . , Riw1 7→ riwi}({Fi} ∪ Ti)

The idea of our combination method is to simplify each condition Ci(u, a1, . . . , ap)
into the truth value of a BAPA formula. If this is possible, we say that there exists a
BAPA reduction.

Definition 2 (BAPA Reduction). If Fi is a set of formulas and Ti ⊆ Fi a theory, we
call a function ρ : Fi → FBAPA a BAPA reduction for (Fi, Ti) iff for every formula
Fi ∈ Fi and for all finite u and a1, . . . , ap ⊆ u, the condition

∃ri1 . . . riwi .
{obj→ u,A1 7→ a1, . . . , Ap 7→ ap, Ri1 7→ ri1, . . . , Riw1 7→ riwi}({Fi} ∪ Ti)

is equivalent to the condition {obj→ u,A1 7→ a1, . . . , Ap 7→ ap}(ρ(Fi))

A computable BAPA reduction is a BAPA reduction which is computable as a function
on formula syntax trees.

Theorem 3. Suppose that for every 1 ≤ i ≤ n for (Li, Ti) there exists a computable
BAPA reduction ρi. Then the problem (1) in Section 4.1 is decidable.

Specifically, to check satisfiability ofB(F1, . . . , Fn), computeB(ρ1(F1), . . . , ρn(Fn))
and then check its satisfiability using a BAPA decision procedure [21, 22].

5 BAPA Reductions

5.1 Monadic Second-Order Logic of Finite Trees

Figure 5 shows the syntax of (our presentation of) monadic second-order logic of finite
trees (FT), a variant of weak monadic second-order logic of two successors (WS2S) [18,
33]. The following are the sorts of constants appearing in FT formulas: succL, succR :
obj2 → bool. The operations ⊆, ∅,Univ, singleton, ∩,∪, and complement have the
same sorts (and semantics) as in BAPA.

We interpret the sort obj over finite, prefix-closed sets of binary strings. More pre-
cisely, we use {1, 2} as the binary alphabet, and we let JobjK ⊆ {1, 2}∗ such that

∀w ∈ {1, 2}∗. (w1 ∈ JobjK ∨ w2 ∈ JobjK)→ w ∈ JobjK

In each model, JsetK is the set of all subsets of JobjK. We let JεK be the empty string
which we also denote by ε. We define

JsuccLK = {(w,w1) | w1 ∈ JobjK} and JsuccRK = {(w,w2) | w2 ∈ JobjK}
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F ::= P | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∀x:s.F | ∃x:s.F
s ::= obj | set
P ::= B1 = B2 | B1 ⊆ B2 | r(x, y)
r ::= succL | succR

B ::= x | ε | ∅ | Univ | {x} | B1 ∪B2 | B1 ∩B2 | Bc

Fig. 5. Monadic Second-Order Logic of Finite Trees (FT)

The remaining constants and operations on sets are interpreted as in BAPA.
Let FFT be the set of all formulas in Figure 5. Let MFT be the set of all (finite)

structures described above. We define TFT as the subset of FFT such that F is true in all
interpretations fromMFT.

The models of the theory TFT correspond up to isomorphism with the interpretations
inMFT.

Lemma 4. If α is a structure such that α(TFT) then α is isomorphic to some structure
inMFT.

Note that any FT formula F (x) with a free variable x of sort obj can be transformed
into the equisatisfiable formula ∃x : obj.y = {x} ∧ F (x) where y is a fresh variable of
sort set. For conciseness of presentation, in the rest of this section we only consider FT
formulas F with FVobj(F ) = ∅ and we write FV(F ) as short for FVset(F ).

Finite tree automata. In the following, we recall the connection between FT formulas
and finite tree automata. Let Σ be a finite ranked alphabet. We call symbols of rank
0 constant symbols and a symbol of rank k > 0 a k-ary function symbol. We denote
by Terms(Σ) the set of all terms over Σ. We associate a position p ∈ {1, . . . , rmax}∗
with each subterm in a term t where rmax is the maximal rank of all symbols in Σ. We
denote by t[p] the topmost symbol of the subterm at position p. For instance, consider
the term t = f(g(a, b, c), a) then we have t[ε] = f and t[13] = c.

A finite (deterministic bottom-up) tree automaton A for alphabet Σ is a tuple
(Q,Qf , ι) where Q is a finite set of states, Qf ⊆ Q is a set of final states, and ι is
a function that associates with each constant symbol c ∈ Σ a state ι(c) ∈ Q and with
each k-ary function symbol f ∈ Σ a function ι(f) : Qk → Q. We homomorphically
extend ι from symbols in Σ to Σ-terms. We say that A accepts a term t ∈ Terms(Σ) if
ι(t) ∈ Qf . The language L(A) accepted by A is the set of all Σ-terms accepted by A.

Let F be an FT formula. Define ΣF to be the alphabet consisting of the constant
symbol⊥ and all binary function symbols f such that f itself is a function f : FV(F )→
{0, 1}. We inductively associate a ΣF -term tα,w with every structure α ∈ MFT and
string w ∈ {1, 2}∗ as follows:

tα,w =

{
fα,w(tα,w1, tα,w2) if w ∈ α(obj)
⊥ otherwise

such that for all x ∈ FV(F ), fα,w(x) = 1 iff w ∈ α(x). The language L(F ) ⊆
Terms(ΣF ) of F is then defined by L(F ) = { tα,ε | α ∈MFT ∧ α(F ) }.
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The following theorem states the connection between the structures satisfying FT
formulas and the languages accepted by finite tree automata2.

Theorem 5 (Thatcher and Wright [33]). For every FT formula F there exists a fi-
nite tree automaton AF over alphabet ΣF such that L(F ) = L(AF ) and AF can be
effectively constructed from F .

Parikh image. We recall Parikh’s commutative image [29]. The Parikh image for
an alphabet Σ is the function Parikh : Σ∗ → Σ → N such that for any word
w ∈ Σ∗ and symbol σ ∈ Σ, Parikh(w)(σ) is the number of occurrences of σ in w.
The Parikh image is extended pointwise from words to sets of words: Parikh(W ) =
{Parikh(w) | w ∈W }. In the following, we implicitely identify Parikh(W ) with the
set of integer vectors { (χ(σ1), . . . , χ(σn)) | χ ∈ Parikh(W ) } where we assume some
fixed order on the symbols σ1, . . . , σn in Σ.

Theorem 6 (Parikh [29]). Let G be a context-free grammar and L(G) the language
generated from G then the Parikh image of L(G) is a semilinear set and its finite rep-
resentation is effectively computable from G.

We generalize the Parikh image from words to terms as expected: the Parikh image
for a ranked alphabet Σ is the function Parikh : Terms(Σ) → Σ → N such that for
all t ∈ Terms(Σ) and σ ∈ Σ, Parikh(t)(σ) is the number of positions p in t such that
t[p] = σ. Again we extend this function pointwise from terms to sets of terms.

Lemma 7. Let A be a finite tree automaton over alphabet Σ. Then the Parikh image of
L(A) is a semilinear set and its finite representation is effectively computable from A.

5.2 BAPA Reduction for Monadic Second-Order Logic of Finite Trees

In the following, we prove the existence of a computable BAPA reduction for the theory
of monadic second-order logic of finite trees.

Let F be an FT formula and let Σ2
F be the set of all binary function symbols in ΣF ,

i.e., Σ2
F

def= ΣF \ {⊥}. We associate with each σ ∈ Σ2
F the Venn region vr(σ), which is

given by a set-algebraic expression over FV(F ) as follows:

vr(σ) def=
⋂

x∈FV(F )

xσ(x) .

Hereby x0 denotes xc and x1 denotes x. Let α ∈MFT be a model of F . Then the term
tα,ε encodes for each w ∈ α(obj) the Venn region to which w belongs in α, namely
vr(tα,ε[w]). Thus, the Parikh image Parikh(tα,ε) encodes the cardinality of each Venn
region over FV(F ) in α.

Lemma 8. Let F be an FT formula then

Parikh(L(F ))|Σ2
F

=
{{

σ 7→ |α(vr(σ))| | σ ∈ Σ2
F

}
| α ∈MFT ∧ α(F )

}
.

2 The theorem was originally stated for WS2S where the universe of all structures is fixed to the
infinite binary tree {1, 2}∗ and where all set variables range over finite subsets of {1, 2}∗. It
carries over to finite trees in a straightforward manner.
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According to Theorem 5 we can construct a finite tree automaton AF over ΣF such
that L(F ) = L(AF ). From Lemma 7 follows that Parikh(L(F )) is a semilinear set
whose finite representation in terms of base and step vectors is effectively computable
from AF . From this finite representation we can construct a Presburger arithmetic for-
mula φF over free integer variables {xσ | σ ∈ ΣF }whose set of solutions is the Parikh
image of L(F ), i.e.

Parikh(L(F )) = { {σ 7→ kσ | σ ∈ ΣF } | {xσ 7→ kσ | σ ∈ Σ } (φF ) } (4)

Using the above construction of the Presburger arithmetic formula φF for a given FT
formula F , we define the function ρFT : FFT → FBAPA as follows:

ρFT(F ) def= ∃xσ. φF ∧
∧

σ∈Σ2
F

card(vr(σ)) = xσ

where xσ are the free integer variables of φF .

Theorem 9. The function ρFT is a BAPA reduction for (FFT, TFT).

5.3 Two-Variable Logic with Counting

Figure 6 shows the syntax of (our presentation of) two-variable logic with counting.
As usual in two-variable logic with counting, we require that every sub-formula of a
formula has at most two free variables. The interpretation of the counting quantifier
∃Kx:set.F for a positive constant K is that there exist at least K distinct elements x
for which formula F holds. In the atomic formula r(x1, . . . , xk) we require the relation
variable r to be of sort objk → bool, and require k > 1. Following the general setup, the
relation variables denote relations on the finite set JobjK. We do not impose additional
restrictions on the relation variables, so the theory we consider is the theory of two-
variable logic over all finite models.

F ::= P | F1 ∧ F2 | F1 ∨ F2 | ¬F | ∃Kx:obj.F
P ::= x1 = x2 | {x} ⊆ A | r(x1, . . . , xk)

Fig. 6. Two-Variable Logic with Counting (C2)

Let FC2 be the set of all formulas in Figure 5. Let MC2 be the set of all (finite)
structures described above. We define TC2 as the subset of FC2 such that F is true in
all interpretations fromMC2.

5.4 BAPA Reduction for Two-Variable Logic with Counting

We next build on the results in [32] to define a BAPA reduction for two-variable logic
with counting (C2). We fix set variables A1, . . . , Ap and relation variables r1, . . . , rq .
Throughout this section, letΣA = {A1, . . . , Ap},ΣR = {r1, . . . , rq}, andΣ0 = ΣA∪
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ΣR. We call ΣA, ΣA, Σ0 signatures, because they correspond to notion of signature in
in traditional first-order logic formulation of two-variable logic with counting.
Model theoretic types. Define the model-theoretic notion of n-type πΣ(x1, . . . , xn)
in the signature Σ as the maximal consistent set of non-equality literals in Σ whose
obj-sort variables are included in {x1, . . . , xn}. 3 Given a structure α such that
α(x1), . . . , α(xn) are all distinct, α induces the n-type

itypα,Σ(x1, . . . , xn) = {L | α(L)∧FV(L) ⊆ {x1, . . . , xn}, L is Σ-literal without ’=’}

We also define the set of n-tuples for which a type π holds in a given structure α:

Sα(π(x1, . . . , xn)) = {(e1, . . . , en) ∈ α(obj)n | α(x1 := e1, . . . , xn := en)(π)}

If Σ ⊆ Σ′ and π′ is an n-type in signature Σ′, by π′|Σ we denote the subset of π
containing precisely those literals from π whose sets and relations belong to Σ. The
family of sets {Sα(π′) | π′|Σ = π} is a partition of Sα(π′).

We will be particularly interested in 1-types. We identify a 1-type π(x) in the sig-
nature ΣA with the corresponding Venn region⋂

{Ai | ({x} ⊆ Ai) ∈ π(x)} ∩
⋂
{Aci | (¬({x} ⊆ Ai)) ∈ π(x)}.

If π1, . . . , πm is the sequence of all 1-types in the signature Σ and α is a structure, let
Iα(Σ) = (|Sα(π1)|, . . . , |Sα(πm)|). IfM is a set of structures let IM(Σ) = {Iα(Σ) |
α ∈M}. Note that, if π is a 1-type in Σ and π′ a 1-type in Σ′ for Σ ⊆ Σ′, then

|Iα(π)| =
∑

π′|Σ=π

|Iα(π′)|

Consequently, if IM(Σ′) is semilinear, then so is IM(Σ) for Σ ⊆ Σ′. We will show
below that for every C2 formula φ in the signature Σ0, the set IM(Σ0) is semilinear
forM = {α | α(φ)} the set of models of φ. Because ΣA ⊆ Σ0, the counts of Venn
regions IM(ΣA) will then also form a semilinear set. By Lemma 1, we will conclude
that C2 is BAPA reducible.
Moving to differentiated chromatic sparse structures preserves 1-types. Let φ be a
C2 formula with signature Σ0 of relation symbols. By Scott normal form transforma-
tion [32, Lemma 1] it is possible to introduce fresh set variables and compute another
C2 formula φ∗ in an extended signature Σ∗ ⊇ Σ0, and compute a constant Cφ such
that, for all sets u with |u| ≥ Cφ,

1. if α0 is a Σ0 interpretation with domain u such that α0(φ), then there exists its Σ∗

extension α∗ ⊇ α0 such that α∗(φ∗);
2. if α∗ is a Σ∗ interpretation with domain u such that α∗(φ∗), then for its restriction
α0 = α∗|Σ we have α0(φ).

3 For example, if Σ has one relation variable r, and two set variables A1, A2, then each 2-
type with free variables x, y contains, for each of the atomic formulas with variables x, y (i.e.
{x} ⊆ A1, {y} ⊆ A1, {x} ⊆ A2, {y} ⊆ A2, (x, x) ∈ r, (y, y) ∈ r, (x, y) ∈ r, (y, x) ∈ r)
either the formula or its negation.
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By introducing further fresh set- and relation- symbols, [32, lemmas 2 and 3] shows
that we can extend the signature from Σ∗ to Σ such that each model α∗ in Σ∗ extends
to a model α in Σ, where α satisfies some further conditions of interest: α is chromatic
and differentiated. [32, Lemma 10] then shows that it is possible to transform a model of
a formula into a so-called X-sparse model for appropriately computed integer constant
X . What is important for us is the following.

Observation 1 The transformation for obtaining from α0 a chromatic, differentiated,
X-sparse structure α have the property that, for structures of size Cφ or more,

1. the domain remains the same: α0(obj) = α(obj),
2. the induced 1-types in the signature Σ0 remain the same: for each 1-type π in

signature Σ0, Sα0(π) = Sα(π).

Star types. [32, Definition 9] introduces a star-type (π,v) (denoted by letter σ) as
a description of a local neighborhood of a domain element, containing its induced 1-
type π as well as an integer vector v ⊆ ZN that count 2-types in which the element
participates, where N is a function of the signature Σ. A star type thus gives more
precise description of properties of a domain element than a 1-type. Without giving the
actual definition of a star type, we note that we can similarly define the set Sα((π,v))
of elements that realize a given star type (π,v). Moreover, for a given 1-type π, the
family of the non-empty among the sets Sα((π,v)) partitions the set Sα(π).
Frames. The notion of Y -bounded chromatic frame [32, Definition 11] can be thought
of as representation of a disjunct in a normal form for the formula φ∗. It summarizes the
properties of elements in the structure and specifies (among others), the list of possible
star types σ1, . . . , σN whose integer vectors are bounded by Y . For a given φ∗, it is
possible to effectively compute the set of Cφ-bounded frames F such that φ∗ |= F
holds. The ‘|=’ in φ∗ |= F is a certain syntactic relation defined in [32, Definition 13].

For each frame F with star-types σ1, . . . , σN , [32, Definition 14] introduces an
effectively computable Presburger arithmetic formula PF with N free variables; we
write PF (w1, . . . , wN ) if PF is true when these variables take the values w1, . . . , wN .
The following statement is similar to the main [32, Theorem 1], and can be directly
recovered from its proof and the proofs of the underlying [32, lemmas 12,13,14].

Theorem 10. Given a formula φ∗, and the corresponding integer constant Cφ, there
exists a computable constant X such that if N ≤ X , if σ1, . . . , σN is a sequence of star
types inΣ whose integer vectors are bounded byCφ, andw1, . . . , wN are integers, then
the following are equivalent:

1. There exists a chromatic differentiated structure α such that α(φ∗), wi = |Sα(σi)|
1 ≤ i ≤ N , and

⋃N
i=1 S

α(σi) = α(obj).
2. There exists a chromatic frame F with star types σ1, . . . , σN , such that F |= φ∗

and PF (w1, . . . , wN ).

We are now ready to describe our BAPA reduction. Fix V1, . . . , VM to be the list of all
1-types in signature ΣA; let s1, . . . , sM be variables corresponding to their counts. By
the transformation of models into chromatic, differentiated, X-sparse ones, the Obser-
vation 1, and Theorem10, we obtain
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Corollary 11. If M = {α | α(φ∗)}, then there is a computable constant X
IM(ΣA) = {(s1, . . . , sM ) | Fφ∗(s1, . . . , sM )} where Fφ∗(s1, . . . , sM ) is the follow-
ing Presburger arithmetic formula

∨
N,σ1,...,σN ,F

∃w1, . . . , wN . PF (w1, . . . , wN ) ∧
M∧
j=1

sj =
∑
{wi | Vj = (πi|ΣA)}

where N ranges over {0, 1,≤ X}, σ1, . . . , σN range over sequences of Cφ-bounded
star types (of which there are finitely many), and where F ranges over the finitely many
Cφ-bounded frames with star types σ1, . . . , σN such that F |= φ∗.

By adjusting for the small structures to take into account Scott normal form transfor-
mation, we further obtain

Corollary 12. IM(ΣA) = {(s1, . . . , sM ) | Gφ(s1, . . . , sM )} forM = {α | α(φ)},
where Gφ(s1, . . . , sM ) is the Presburger arithmetic formula

M∑
i=1

si ≥ Cφ ∧ Fφ∗(s1, . . . , sM )
∨

∨
{
M∧
i=1

si = di | ∃α. |α(obj)| < Cφ ∧ (d1, . . . , dM ) ∈ Iα(ΣA)}

Theorem 13. The following is a BAPA reduction for two-variable logic with counting
over finite models: given a two-variable logic formula φ, compute the BAPA formula

∃s1, . . . , sM . Gφ(s1, . . . , sM ) ∧
M∧
i=1

card(Vi) = si.

5.5 Bernays-Schönfinkel Fragment of First-Order Logic

Figure 7 shows the syntax of (our presentation of) the Bernays-Schönfinkel fragment
of first-order logic with equality [4], often called effectively propositional logic (EPR).
The interpretation of atomic formulas are the same as for two-variable logic with count-
ing. Quantification is restricted to variables of sort obj and must obey the usual restric-
tion of ∃∀-prenex form that characterizes the Bernays-Schönfinkel class.

F ::= ∃x1 : obj, . . . , xn : obj. ∀y1 : obj, . . . , ym : obj. B
B ::= P | B1 ∧B2 | B1 ∨B2 | ¬B
P ::= x1 = x2 | {x} ⊆ A | r(x1, . . . , xk)

Fig. 7. Bernays-Schönfinkel Fragment of First-Order Logic
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5.6 BAPA Reduction for Bernays-Schönfinkel Fragment

We first consider only EPR formulas without top-level existential quantifiers, but con-
taining constants.

The key to our BAPA reduction for Bernays-Schönfinkel fragment (EPR) is the
following theorem, whose proof is in Appendix A.4 and follows from basic properties
of ground and non-ground resolution.

Theorem 14 (EPR Reduces to EPR). Let ∀x.φ be an EPR formula with set variables
A1, . . . , Ap, relation variables r1, . . . , rq , and constants c1, . . . , cT . Then the condition
∃r1, . . . ,∃rq.φ is equivalent to the conjunction of all EPR formulasB with 1) no nested
quantifiers, 2) with set variables inB amongA1, . . . , Ap and with constants are among
c1, . . . , cT , and 3) for which φ→ B is valid.

We observe that there are only finitely such formulas B in a given language of set
variables and constants. We can also enumerate representatives of all such formulas.
Note also that the validity check for φ → B over finite models is decidable because
¬(φ→ B′) is in EPR, and EPR has small model property.

Finally, consider a formula of the form ∃y.∀x.φ(x,y). By Skolemizing the formula
we obtain ∀x.φ(x, c) for which Theorem 14 gives us the reduction B. The final result
is then a BAPA formula obtained by unskolemizing B.

5.7 Sets and Multisets

The satisfiability of the quantifier free fragment of multisets with cardinality operators
is decidable [30]. There is, in fact, also a BAPA reduction from a quantifier-free formula
F containing setsA1, . . . , Ap and multisetsM1, . . . ,Mq to a BAPA formula on sets. To
obtain a BAPA reduction, we apply the decision procedure in [30] to the formula F ∧∧w
i=1 card(Vi)=ki with fresh integer variables k1, . . . , kw. The result is a Presburger

arithmetic formula P . If x1, . . . , xn are the variables in P other than k1, . . . , kw, the
result of the BAPA reduction is then the formula

∃k1. . . .∃kw. (
w∧
i=1

card(Vi)=ki) ∧ (∃x1:int. . . .∃xn:int. P )

6 Further Related Work

There are combination results for the disjoint combinations of non-stably infinite the-
ories [8, 19, 35]. These results are based on the observation that such combinations are
possible whenever one can decide for each component theory whether a model of a
specific cardinality exists. Our combination result takes into account not only the cardi-
nality of the models, i.e. the interpretation of the universal set, but cardinalities of Venn
regions over the interpretations of arbitrary shared set variables. Thus, it is a natural
generalization of the dijoint case leading to a non-disjoint combination of non-stably
infinite theories.

Ghilardi [11] proposes a model-theoretic condition for decidability of the non-
disjoint combination of theories based on quantifier elimination and local finiteness.
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Our combination result also applies to theories that are not locally finite such as monadic
second-order logic of finite trees.

Gabbay and Ohlbach [9] present a partial procedure for second-order quantifier
elimination, which is not claimed to be complete for a well-defined class of formulas,
but terminates on many specific example formulas.

The general combination of weak monadic second-order logics with linear cardi-
nality constraints has been proven undecidable by Klaedtke and Rueß [16, 17]. They
introduce the notion of Parikh automata to identify decidable fragments of this logic
which inspired our BAPA reduction of MSOL of finite trees. Our combined logic is
incomparable to the decidable fragments identified by Klaedtke and Rueß because it
supports non-tree structures as well. However, by applying projection to C2 and the
Bernays-Schönfinkel class, we can combine our logic with [16, 17], obtaining an even
more expressive decidable logic.

7 Conclusion

Many verification techniques rely on decision procedures to achieve a high degree of
automation. The class of properties that such techniques are able to verify is therefore
limited by the expressive power of the logics supported by the underlying decision pro-
cedures. We have presented a combination result for logics that share operations on
sets. This result yields an expressive decidable logic that is useful for software verifi-
cation. We therefore believe that we made an important step in increasing the class of
properties that are amenable to automated verification.
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A Additional Proofs

A.1 Proof of Lemma 4

First, define FT formulas Succ(x, y) and Reach(x, y) as follows, where x, y are vari-
ables of sort obj:

Succ(x, y) = (succL(x, y) ∨ succR(x, y))
Reach(x, y) = (∀S :set. x ∈ S ∧ (∀u, v :obj. u ∈ S ∧ Succ(u, v)→ v ∈ S)→ y ∈ S)

Note that in any structure α, Succ denotes the union of the relations succL and succR
and Reach denotes the reflexive transitive closure of Succ. The following FT formulas
are true in all structuresMFT:

OneRoot = (∀x : obj.(∀y : obj.¬Succ(y, x))→ x = ε)
Acyclic = (∀x : obj, y : obj.Succ(x, y)→ ¬Reach(y, x))

NoShared = (∀x : obj, y : obj, z : obj.(Succ(x, z) ∧ Succ(y, z)→ x = y) ∧
(∀x : obj, y : obj.¬succL(x, y) ∨ ¬succR(x, y))

Now, assume α(TFT). Let r = α(ε) and let further JSuccK be the relation denoted by
Succ(x, y) in α and JReachK the relation denoted by Reach(x, y). Furthermore, let
h : α(obj)× {1, 2}∗ be the smallest relation satisfying:

– (r, ε) ∈ h
– for all o1, o2 ∈ α(obj), (o1, w) ∈ h and (o1, o2) ∈ α(succL) implies (o2, w1) ∈ h
– for all o1, o2 ∈ α(obj), (o1, w) ∈ h and (o1, o2) ∈ α(succR) implies (o2, w2) ∈ h

Note that for all o ∈ dom(h) we have (r, o) ∈ JReachK. Let W = rng(h). We
claim that h is a bijection between α(obj) and W . First, assume that there exists
o0 ∈ α(obj) \ dom(h). Then (r, o0) /∈ JReachK. Assume there is some or, such that
(r, or) /∈ JReachK, (or, o0) ∈ JReachK and for all o1 ∈ α(obj), (o1, or) /∈ JSuccK.
Thus, in particular or 6= r. This contradicts the fact that OneRoot is true in α. Thus,
assume there is no such or. Then there exists an infinite chain o0, o1, o2, . . . of elements
in α(obj) such that for all i ∈ N, (oi+1, oi) ∈ JSuccK. It follows for all i, j ∈ N with
i < j that (oj , oi) ∈ JReachK. Since α(obj) is finite, there exist i, j ∈ N such that i < j
and o1 = oj . Thus, (oi, oj−1) ∈ JSuccK and (oj−1, oi) ∈ JReachK. This contradicts the
fact that Acyclic is true in α. We conclude dom(h) = α(obj).

For proving that h is functional, assume that there is o ∈ α(obj) and distinct
w1, w2 ∈ W such that (o, w1) ∈ h and (o, w2) ∈ h. Then there exist distinct o1
and o2 such that (o1, o) ∈ JSuccK and (o2, o) ∈ JSuccK. This contradicts the fact that
NoShared is true in α. Thus, h is functional. By similar reasoning we can prove that h
is injective.

Since h is a bijection between α(obj) and W , it follows that W is finite. By con-
struction, W is also prefix-closed. Let α′ be the structure inMFT that is determined by
W . Again by construction, h is isomomorphic with respect to the interpretations of ε,
succL, and succR in α and α′, which proves the lemma.
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A.2 Proof of Lemma 7

Let A = (Q,Qf , ι) be a tree automaton over ranked alphabet Σ. Consider the context-
free grammar G = (N,T,R, S) where S is a fresh start symbol disjoint from Σ and Q,
N = Q, T = Σ, and R is the smallest set containing the production rules:

– S → q: if q ∈ Qf ,
– q → c: if c is a constant symbol in Σ and ι(c) = q,
– q → fq1 . . . qk: if f is a k-ary function symbol in Σ and ι(f)(q1, . . . , qk) = q.

Then G generates all words in Σ∗ that result from a pre-order traversal of some Σ-
term accepted byA, i.e., Parikh(L(G)) = Parikh(L(A)). Then the lemma follows from
Theorem 6.

A.3 Proof of Theorem 9

Let F be an FT formula. For proving the left-to-right direction assume that α is a struc-
ture such that α(TFT ∪ {F}). From Lemma 4 follows that there exists some structure
α′ ∈ MFT such that α′ is isomorphic to α. Thus, α′ is a model of F . According to
Lemma 8 there exists k ∈ N such that

(
{
σ 7→ |α′(vr(σ))| | σ ∈ Σ2

F

}
∪ {⊥ 7→ k}) ∈ Parikh(L(F ))

From Equation 4 and the definition of ρFT follows α′|FV(F )(ρFT). Since α and α′ agree
on the interpretations of the free set variables of F up to isomorphism, we conclude
α|FV(F )(ρFT).

For the right-to-left direction assume that α is a structure such that α(ρFT) holds. We
need to find interpretations for succL and succR that extend α to a model of TFT∪{F}.
From the definition of ρFT and Equation 4 follows that there exists k ∈ N such that

(
{
σ 7→ |α(vr(σ))| | σ ∈ Σ2

F

}
∪ {⊥ 7→ k}) ∈ Parikh(L(F )) .

From Lemma 8 follows that there exists α′ ∈ MFT such that α′(F ) and for all
σ ∈ Σ2

F , |α(vr(σ))| = |α′(vr(σ))|. Since α and α′ agree on the cardinalities of
all Venn regions over FV(F ), there exists a bijection h : α(obj) → α′(obj) which
is isomorphic with respect to the interpretation of all x ∈ FV(F ) in α and α′.
Choose one such isomorphism h. Let sL, sR : α(obj)2 → {true, false} be such that
for all o1, o2 ∈ α(obj), (o1, o2) ∈ sL,R iff (h(o1), h(o2)) ∈ α′(succL,R). Then
(α ∪ {succL 7→ sL, succR 7→ sR, ε 7→ h(ε)}) is a model of TFT ∪ {F}.

A.4 Proof of Theorem 14

Let B1, . . . , BN be all such EPR formulas and let B∗ be their conjunction. Let α be a
finite structure such that α(B∗). Assume without loss of generality that the elements of
α(obj) = {d1, . . . , dU} are disjoint from the set of original constants c1, . . . , cT , and
introduce them as fresh constants. Let φ0 denote the grounding of φ for all possible
N -tuples of concrete domain elements:∧

w∈α(obj)N
φ[x := w]
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On this ground formula, consider the propositional resolution that systematically re-
solves all clauses along the ground atomic formulas Li of the form r(di1 , . . . , dik)
where r is a relation variable. Whenever two literals are resolved while containing L,
we remove the clauses that participated in resolution and keep only the resolvent. If the
current conjunction of all clauses isC1∧. . .∧Cn, then (by a simple property of proposi-
tional resolution), performing the resolution on all pairs of clauses containing L results
in a set of clauses (propositionally) equivalent to ∃L.(C1 ∧ . . .∧Cn). If L1, . . . , Lk are
all possible atomic formulas containing relation symbols instantiated with all possible
domain elements, let S denote the ground clause resulting from eliminating all of them;
this set of clauses is equivalent to ∃L1. . . .∃Lk.φ0.

Because φ0 is a ground instance of φ, by the lifting lemma for non-ground resolu-
tion, there exists a resolution proof of length no longer than the proof for S, and that
derives a finite set of clauses Q such that S is an instance of Q. Furthermore, there is
such Q that does not contain relation symbols. Because resolution does not introduce
new function symbols, Q is also an EPR formula. Therefore, B∗ entails Q. Because
α(B∗), we have α(Q) and thus α(S). Therefore, ∃L1. . . .∃Lk.φ0, so there exists an
interpretation for the clauses L1, . . . , Lk that makes φ0 true. Therefore, there exists an
extension α′ of α interpreting the relations r1 to rq such that φ is true in α′.
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