Abstract
Particle swarm optimization (PSO) is a metaheuristic inspired on the flight of a flock of birds seeking food, which has been widely used for a variety of optimization tasks [1,2]. However, its use in multimodal optimization (i.e., single-objective optimization problems having multiple optima) has been relatively scarce.
In this chapter, we will review the most representative PSO-based approaches that have been proposed to deal with multimodal optimization problems. Such approaches include the simple introduction of powerful mutation operators, schemes to maintain diversity that were originally introduced in the genetic algorithms literature (e.g., niching [3,4]), the exploitation of local topologies, the use of species, and clustering, among others.
Our review also includes hybrid methods in which PSO is combined with another approach to deal with multimodal optimization problems. Additionally, we also present a study in which the performance of different PSO-based approaches is assessed in several multimodal optimization problems. Finally, a case study consisting on the search of solutions for systems of nonlinear equations is also provided.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm intelligence. Morgan Kaufmann, San Francisco (2001)
Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. John Wiley & Sons, Chichester (2006)
Goldberg, D.E., Richardson, J.: Genetic algorithm with sharing for multimodal function optimization. In: Grefenstette, J.J. (ed.) Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms, pp. 41–49. Lawrence Erlbaum, Hillsdale (1987)
Deb, K., Goldberg, D.E.: An Investigation of Niche and Species Formation in Genetic Function Optimization. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, San Mateo, California, George Mason University, pp. 42–50. Morgan Kaufmann Publishers, San Francisco (1989)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway (1995)
Deb, K., Kumar, A.: Real-coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems. Complex Systems 9, 431–454 (1995)
Kennedy, J.: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999 IEEE Congress on Evolutionary Computation (CEC 1999), vol. 3, pp. 1931–1938. IEEE Computer Society Press, Los Alamitos (1938)
Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation (CEC 2002), Washington, DC, USA, pp. 1671–1676. IEEE Computer Society Press, Los Alamitos (2002)
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings, pp. 69–73. IEEE Press, Los Alamitos (1998)
Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proceedings of the 1999 IEEE Congress on Evolutionary Computation (CEC 1999), vol. 3, pp. 1945–1950. IEEE Press, Los Alamitos (1999)
Clerc, M., Kennedy, J.: The particle swarm: explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)
Esquivel, S.C., Coello Coello, C.A.: On the use of particle swarm optimization with multimodal functions. In: Proceedings of the 2003 IEEE Congress on Evolutionary Computation (CEC 2003), vol. 2, pp. 1130–1136. IEEE Press, Los Alamitos (2003)
Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 3rd edn. Springer, London (1996)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Co., Reading (1989)
Mahfoud, S.W.: Niching Methods for Genetic Algorithms. PhD thesis, University of Illinois at Urbana-Champaign, Department of General Engineering, Urbana, Illinois (May 1995)
Brits, R., Engelbrecht, A., van den Bergh, F.: A Niching Particle Swarm Optimizer. In: Wang, L., et al. (eds.) Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL 2002), Orchid Country Club, Singapore, vol. 2, pp. 692–696. Nanyang Technical University (2002)
van den Bergh, F., Engelbrecht, A.: A new locally convergent particle swarm optimiser. In: 2002 IEEE International Conference on Systems, Man and Cybernetics, vol. 3. IEEE Press, Los Alamitos (2002)
Zhang, J., Huang, D.S., Liu, K.H.: Multi-Sub-Swarm Particle Swarm Optimization Algorithm for Multimodal Function Optimization. In: 2007 IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, pp. 3215–3220. IEEE Computer Society Press, Los Alamitos (2007)
Ursem, R.K.: Multinational evolutionary algorithms. In: Proceedings of the Congress on Evolutionary Computation, pp. 1633–1640. IEEE Press, Los Alamitos (1999)
Yeniay, Özgür: Penalty Function Methods for Constrained Optimization with Genetic Algorithms. Mathematical and Computational Applications 10(1), 45–56 (2005)
Bird, S., Li, X.: Adaptively Choosing Niching Parameters in a PSO. In: Tiwari, M.K., et al. (eds.) 2006 Genetic and Evolutionary Computation Conference (GECCO 2006), Seattle, Washington, USA, vol. 1, pp. 3–9. ACM Press, New York (2006)
Kennedy, J.: Stereotyping: improving particle swarm performance with cluster analysis. In: Proceedings of the, Congress on Evolutionary Computation, vol. 2, pp. 1507–1512. IEEE Computer Society Press, Los Alamitos (2000)
Passaro, A., Starita, A.: Particle swarm optimization for multimodal functions: a clustering approach. Journal of Artificial Evolution and Applications 8(2), 1–15 (2008)
Pelleg, D., Moore, A.: X-means: Extending k-means with efficient estimation of the number of clusters. In: Proceedings of the Seventeenth International Conference on Machine Learning, pp. 727–734. Morgan Kaufmann, San Francisco (2000)
Li, J.P., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A species conserving genetic algorithm for multimodal function optimization. Evolutionary Computation 10(3), 207–234 (2002)
Li, X.: Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 105–116. Springer, Heidelberg (2004)
van den Bergh, F., Engelbrecht, A.: A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation 8(3), 225–239 (2004)
Potter, M.A., de Jong, K.: A Cooperative Coevolutionary Approach to Function Optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994)
Liang, J., Qin, A., Suganthan, P., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation 10(3), 281–295 (2006)
Pant, M., Thangaraj, R., Grosan, C., Abraham, A.: Hybrid differential evolution - particle swarm optimization algorithm for solving global optimization problems. In: Third International Conference on Digital Information Management (ICDIM 2008), November 2008, pp. 18–24 (2008)
Shelokar, P., Siarry, P., Jayaraman, V., Kulkarni, B.: Particle swarm and ant colony algorithms hybridized for improved continuous optimization. Applied Mathematics and Computation 188(1), 129–142 (2007)
Törn, A., Žilinskas, A.: Global Optimization. LNCS, vol. 350. Springer, Heidelberg (1989)
Mühlenbein, H., Schomisch, D., Born, J.: The Parallel Genetic Algorithm as Function Optimizer. Parallel Computing 17(6-7), 619–632 (1991)
Bäck, T., Fogel, D., Michalewicz, Z.: Handbook of Evolutionary Computation. Institute of Physics Publishing Ltd, Bristol and Oxford University Press, New York (1997)
Ackley, D.H.: A connectionist machine for genetic hillclimbing. Kluwer, Boston (1987)
Bäck, T.: Evolutionary algorithms in theory and practice. Oxford University Press, Oxford (1996)
Schwefel, H.P.: Numerical Optimization of Computer Models. John Wiley & Sons, Chichester (1981)
Dobson, I., Chiang, H.D., Thorp., J.S.: A model of voltage collapse in electric power systems. In: IEEE proceedings of 27th Conference on Decision and Control, Austin, Texas, December 1988, pp. 2104–2109 (1988)
Walve, K.: Modeling of power system components at severe disturbances. In: CIGRÉ paper 38-18, International conference on large high voltage electric systems (August 1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Barrera, J., Coello, C.A.C. (2009). A Review of Particle Swarm Optimization Methods Used for Multimodal Optimization. In: Lim, C.P., Jain, L.C., Dehuri, S. (eds) Innovations in Swarm Intelligence. Studies in Computational Intelligence, vol 248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04225-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-04225-6_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04224-9
Online ISBN: 978-3-642-04225-6
eBook Packages: EngineeringEngineering (R0)