Abstract
The existing synteny block reconstruction algorithms use anchors (e.g., orthologous genes) shared over all genomes to construct the synteny blocks for multiple genomes. This approach, while efficient for a few genomes, cannot be scaled to address the need to construct synteny blocks in many mammalian genomes that are currently being sequenced. The problem is that the number of anchors shared among all genomes quickly decreases with the increase in the number of genomes. Another problem is that many genomes (plant genomes in particular) had extensive duplications, which makes decoding of genomic architecture and rearrangement analysis in plants difficult. The existing synteny block generation algorithms in plants do not address the issue of generating non-overlapping synteny blocks suitable for analyzing rearrangements and evolution history of duplications. We present a new algorithm based on the A-Bruijn graph framework that overcomes these difficulties and provides a unified approach to synteny block reconstruction for multiple genomes, and for genomes with large duplications.
Supplementary material: http://grimm.ucsd.edu/ABS
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Vision, T.J., Brown, D.G., Tanksley, S.D.: The Origins of Genomic Duplications in Arabidopsis. Science 290(5499), 2114–2117 (2000)
Lander, E., Linton, L., Birren, B., Nusbaum, C., et al.: Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)
Bailey, J., Baertsch, R., Kent, W., Haussler, D., Eichler, E.: Hotspots of mammalian chromosomal evolution. Genome Biol. 5(4), R23 (2004)
Blanc, G., Hokamp, K., Wolfe, K.H.: A recent polyploidy superimposed on older large-scale duplications in the arabidopsis genome. Genome Res. 13(2), 137–144 (2003)
Bourque, G., Pevzner, P.A., Tesler, G.: Reconstructing the Genomic Architecture of Ancestral Mammals: Lessons From Human, Mouse, and Rat Genomes. Genome Res. 14(4), 507–516 (2004)
Pevzner, P., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. PNAS 100(13), 7672–7677 (2003)
Pevzner, P., Tesler, G.: Genome rearrangements in mammalian evolution: Lessons from human and mouse genomes. Genome Res. 13, 37–45 (2002)
Peng, Q., Pevzner, P., Tesler, G.: The fragile breakage versus random breakage models of chromosome evolution. PLoS Comput. Biol. 2(2), e14 (2006)
Tesler, G.: Grimm: genome rearrangements web server. Bioinf. 18(3), 492–493 (2002)
Nadeau, J., Taylor, B.: Lengths of chromosomal segments conserved since divergence of man and mouse. PNAS 81, 814–818 (1984)
Waterston, R., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J., Agarwal, P., Agarwala, R., Ainscough, R., Alexanderson, M., An, P., et al.: Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002)
Kent, W.J., Baertsch, R., Hinrichs, A., Miller, W., Haussler, D.: Evolution’s cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes. PNAS 100(20), 11484–11489 (2003)
Brudno, M., Malde, S., Poliakov, A., Do, C., Couronne, O., et al.: Glocal alignment: Finding rearrangements during alignment. Bioinf. 19, i54–i62 (2003)
Darling, A., Mau, B., Blattner, F., Perna, N.T.: Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403 (2004)
Bourque, G., Yacef, Y., El-Mabrouk, N.: Maximizing synteny blocks to identify ancestral homologs. In: McLysaght, A., Huson, D.H. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3678, pp. 21–34. Springer, Heidelberg (2005)
Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette, M.: Reconstructing contiguous regions of an ancestral genome. Genome Res. 16, 1557–1565 (2006)
Sinha, A., Meller, J.: Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. BMC Bioinf. 8(1), 82 (2007)
Hachiya, T., Osana, Y., Popendorf, K., Sakakibara, Y.: Accurate identification of orthologous segments among multiple genomes. Bioinf. 25(7), 853–860 (2009)
Kellis, M., Birren, B.W., Lander, E.S.: Proof and evolutionary analysis of ancient genome duplication in the yeast saccharomyces cerevisiae. Nature 428(6983), 617–624 (2004)
Bowers, J.E., Chapman, B.A., Rong, J., Paterson, A.H.: Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003)
Hampson, S., McLysaght, A., Gaut, B., Baldi, P.: LineUp: Statistical Detection of Chromosomal Homology With Application to Plant Comparative Genomics. Genome Res. 13(5), 999–1010 (2003)
Haas, B.J., Delcher, A.L., Wortman, J.R., Salzberg, S.L.: DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinf. 20(18), 3643–3646 (2004)
Vandepoele, K., Saeys, Y., Simillion, C., Raes, J., Van de Peer, Y.: The Automatic Detection of Homologous Regions (ADHoRe) and Its Application to Microcolinearity between Arabidopsis and Rice. Genome Res. 12(11), 1792–1801 (2002)
Simillion, C., Janssens, K., Sterck, L., Van de Peer, Y.: i-ADHoRe 2.0: an improved tool to detect degenerated genomic homology using genomic profiles. Bioinf. 24(1), 127–138 (2008)
Soderlund, C., Nelson, W., Shoemaker, A., Paterson, A.: SyMAP: A system for discovering and viewing syntenic regions of FPC maps. Genome Res. 16(9), 1159–1168 (2006)
Pevzner, P.A., Tang, H., Tesler, G.: De Novo Repeat Classification and Fragment Assembly. Genome Res. 14(9), 1786–1796 (2004)
Raphael, B., Zhi, D., Tang, H., Pevzner, P.: A novel method for multiple alignment of sequences with repeated and shuffled elements. Genome Res. 14(11), 2336–2346 (2004)
Zhi, D., Raphael, B., Price, A., Tang, H., Pevzner, P.: Identifying repeat domains in large genomes. Genome Biol. 7(1), R7 (2006)
Bandeira, N., Clauser, K.R., Pevzner, P.A.: Shotgun Protein Sequencing: Assembly of Peptide Tandem Mass Spectra from Mixtures of Modified Proteins. Mol. Cell Proteomics 6(7), 1123–1134 (2007)
Bourque, G., Zdobnov, E.M., Bork, P., Pevzner, P.A., Tesler, G.: Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages. Genome Res. 15(1), 98–110 (2005)
Dewey, C.N., Pachter, L.: Mercator: Multiple whole-genome-orthology map construction (2006), http://bio.math.berkeley.edu/mercator
Bao, Z., Eddy, S.R.: Automated De Novo Identification of Repeat Sequence Families in Sequenced Genomes. Genome Res. 12(8), 1269–1276 (2002)
Jiang, Z., Tang, H., Ventura, M., Cardone, M.F., Marques-Bonet, T., She, X., Pevzner, P.A., Eichler, E.E.: Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. Nat. Genet. 11, 1361–1368 (2007)
Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J ACM 46, 1–27 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Peng, Q., Alekseyev, M.A., Tesler, G., Pevzner, P.A. (2009). Decoding Synteny Blocks and Large-Scale Duplications in Mammalian and Plant Genomes. In: Salzberg, S.L., Warnow, T. (eds) Algorithms in Bioinformatics. WABI 2009. Lecture Notes in Computer Science(), vol 5724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04241-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-04241-6_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04240-9
Online ISBN: 978-3-642-04241-6
eBook Packages: Computer ScienceComputer Science (R0)