Skip to main content

FlexSnap: Flexible Non-sequential Protein Structure Alignment

  • Conference paper
Algorithms in Bioinformatics (WABI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5724))

Included in the following conference series:

  • 760 Accesses

Abstract

Proteins have evolved subject to energetic selection pressure for stability and flexibility. Structural similarity between proteins which have gone through conformational changes can be captured effectively if flexibility is considered. Topologically unrelated proteins that preserve secondary structure packing interactions can be detected if both flexibility and sequence permutations are considered. We propose the FlexSnap algorithm for flexible non-topological protein structural alignment. The effectiveness of FlexSnap is demonstrated by measuring the agreement of its alignments with manually curated non-sequential structural alignments. FlexSnap showed competitive results against state-of-the-art algorithms, like DALI, SARF2, MultiProt, FlexProt, and FATCAT.

This work was supported in part by NSF Grants EMT-0829835, and CNS-0103708, and NIH Grant 1R01EB0080161-01A1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wriggers, W., Schulten, K.: Protein domain movements: detection of rigid domains and visualization of hinges in comparisons of atomic coordinates. Proteins: Structure, Function, and Genetics 29, 1–14 (1997)

    Article  CAS  Google Scholar 

  2. Holm, L., Sander, C.: Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233(1), 123–138 (1993)

    Article  CAS  PubMed  Google Scholar 

  3. Subbiah, S., Laurents, D.V., Levitt, M.: Structural similarity of dna-binding domains of bacteriophage repressors and the globin core. Curr. Biol. 3, 141–148 (1993)

    Article  CAS  PubMed  Google Scholar 

  4. Alexandrov, N.N.: Sarfing the pdb. Protein Engineering 50(9), 727–732 (1996)

    Article  Google Scholar 

  5. Shindyalov, I.N., Bourn, P.E.: Protein structure alignment by incremental combinatorial extension (ce) of the optimal path. Protein Eng. 11, 739–747 (1998)

    Article  CAS  PubMed  Google Scholar 

  6. Shatsky, M., Nussinov, R., Wolfson, H.J.: A method for simultaneous alignment of multiple protein structures. Proteins: Structure, Function, and Bioinformatics 56(1), 143–156 (2004)

    Article  CAS  Google Scholar 

  7. Yuan, X., Bystroff, C.: Non-sequential structure-based alignments reveal topology-independent core packing arrangements in proteins. Bioinformatics 21(7), 1010–1019 (2003)

    Article  Google Scholar 

  8. Zhu, J., Weng, Z.: Fast: A novel protein structure alignment algorithm. Proteins:Structure, Function and Bioinformatics 14, 417–423 (2005)

    Article  Google Scholar 

  9. Lindqvist, Y., Schneider, G.: Circular permutations of natural protein sequences: structural evidence. Curr. Opin. Struct. Biol. 7(3), 422–427 (1997)

    Article  CAS  PubMed  Google Scholar 

  10. Milik, M., Szalma, S., Olszewski, K.A.: Common structural cliques: a tool for protein structure and function analysis. Protein Engineering 16(8), 543–552 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. Shatsky, M., Nussinov, R., Wolfson, H.J.: Flexible protein alignment and hinge detection. Proteins: Structure, Function, and Bioinformatics 48, 242–256 (2002)

    Article  CAS  Google Scholar 

  12. Ye, Y., Godzik, A.: Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19, II246–II255 (2003)

    Google Scholar 

  13. Kolodny, R., Linial, N.: Approximate protein structural alignment in polynomial time. PNAS 101, 12201–12206 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970)

    Article  CAS  PubMed  Google Scholar 

  15. Gerstein, M., Levitt, M.: Using iterative dynamic programming to obtain accurate pairwise and multiple alignments of protein structures. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 4, pp. 59–67 (1996)

    Google Scholar 

  16. Orengo, C.A., Taylor, W.R.: Ssap: sequential structure alignment program for protein structure comparison. Methods Enzymol. 266, 617–635 (1996)

    Article  CAS  PubMed  Google Scholar 

  17. Eidhammer, I., Jonassen, I., Taylor, W.R.: Protein Bioinformatics: An algorithmic Approach to Sequence and Structure Analysis. John Wiley & Sons Ltd., UK (2004)

    Google Scholar 

  18. Eidhammer, I., Jonassen, I., Taylor, W.R.: Structure comparison and structure patterns. J. Comput. Biol. 7(5), 685–716 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of np-completeness. W.H. Freeman, San Francisco (1979)

    Google Scholar 

  20. Emekli, U., Schneidman-Duhovny, D., Wolfson, H.J., Nussinov, R., Haliloglu, T.: Hingeprot: Automated prediction of hinges in protein structures. Proteins 70(4), 1219–1227 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. Flores, S.C., Keating, K.S., Painter, J., Morcos, F., Nguyen, K., Merritt, E.A., Kuhn, L.A., Gerstein, M.B.: Hingemaster: normal mode hinge prediction approach and integration of complementary predictors. Proteins 73, 299–319 (2008)

    Article  CAS  PubMed  Google Scholar 

  22. Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. A32, 922–923 (1976)

    Article  Google Scholar 

  23. Chwartz, J.T., Sharir, M.: Identification of partially obscured objects in two dimensions by matching of noisy characteristic curves. Int. J. Robotics Res. 6, 29–44 (1987)

    Article  Google Scholar 

  24. Mayr, G., Dominques, F., Lackner, P.: Comparative analysis of protein structure alignments. BMC Structural Biol. 7(50), 564–577 (2007)

    Google Scholar 

  25. Zemla, A.: Lga - a method for finding 3d similarities in protein structures. Nucleic Acids Research 31(13), 3370–3374 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gerstein, M., Krebs, W.: A database of macromolecular motions. Nucleic Acids Res. 26(18), 4280–4290 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murzin, A., Brenner, S.E., Hubbard, T., Chothia, C.: Scop: A structural classification of proteins for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995)

    CAS  PubMed  Google Scholar 

  28. Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., Thornton, J.M.: Cath- a hierarchic classification of protein domain structures. structure 5(8), 1093–1108 (1997)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salem, S., Zaki, M.J., Bystroff, C. (2009). FlexSnap: Flexible Non-sequential Protein Structure Alignment. In: Salzberg, S.L., Warnow, T. (eds) Algorithms in Bioinformatics. WABI 2009. Lecture Notes in Computer Science(), vol 5724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04241-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04241-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04240-9

  • Online ISBN: 978-3-642-04241-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics