Skip to main content

Aligning Biomolecular Networks Using Modular Graph Kernels

  • Conference paper
Algorithms in Bioinformatics (WABI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5724))

Included in the following conference series:

Abstract

Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aittokallio, T., Schwikowski, B.: Graph-based methods for analysing networks in cell biology. Briefings in Bioinformatics 7(3), 243 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25(17), 3390 (1997)

    Article  Google Scholar 

  3. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nature genetics 25(1), 25 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., et al.: The Universal Protein Resource (UniProt). Nucleic Acids Research 33, D154 (2005)

    Article  Google Scholar 

  5. Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nature Reviews Genetics 5(2), 101–113 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Borgwardt, K.M., Kriegel, H.P.: Shortest-Path Kernels on Graphs. In: Proceedings of the Fifth IEEE International Conference on Data Mining, pp. 74–81 (2005)

    Google Scholar 

  7. Borgwardt, K.M., Kriegel, H.P., Vishwanathan, S.V.N., Schraudolph, N.N.: Graph Kernels For Disease Outcome Prediction From Protein-Protein Interaction Networks. In: Proceedings of the Pacific Symposium of Biocomputing (2007)

    Google Scholar 

  8. Boyle, E.I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J.M., Sherlock, G.O.: GO: TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics (Oxford, England) 20(18), 3710 (2004)

    Article  CAS  Google Scholar 

  9. Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology. Trends Microbiol. 15(1), 45–50 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. Burrus, L.W., McMahon, A.P.: Biochemical analysis of murine Wnt proteins reveals both shared and distinct properties. Experimental cell research 220(2), 363–373 (1995)

    Article  CAS  PubMed  Google Scholar 

  11. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  12. Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research 30(7), 1575 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Flannick, J., Novak, A., Do, C.B., Srinivasan, B.S., Batzoglou, S.: Automatic parameter learning for multiple network alignment. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 214–231. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Forst, C.V., Flamm, C., Hofacker, I.L., Stadler, P.F.: Algebraic comparison of metabolic networks, phylogenetic inference, and metabolic innovation. BMC Bioinformatics 7(1), 67 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman & Co., New York (1979)

    Google Scholar 

  16. Ge, H., Walhout, A.J.M., Vidal, M.: Integrating ‘omic’ information: a bridge between genomics and systems biology. Trends in Genetics 19(10), 551–560 (2003)

    Article  CAS  PubMed  Google Scholar 

  17. Han, J.D., Bertin, N., Hao, T., Goldberg, D.S., Berriz, G.F., Zhang, L.V., Dupuy, D., Walhout, A.J., Cusick, M.E., Roth, F.P., Vidal, M.: Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995), 88–93 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. Harary, F.: Graph theory (1969)

    Google Scholar 

  19. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to modular cell biology. Nature 402(6761 suppl.), C47–C52 (1999)

    Article  Google Scholar 

  20. Hedges, S.B.: The origin and evolution of model organisms. Nature Reviews Genetics 3(11), 838–849 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Hirsh, A.E., Fraser, H.B.: Protein dispensability and rate of evolution. Nature 411(6841), 1046–1049 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Ideker, T., Sharan, R.: Protein networks in disease. Genome Research 18(4), 644 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kalaev, M., Bafna, V., Sharan, R.: Fast and accurate alignment of multiple protein networks. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 246–256. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Kalaev, M., Smoot, M., Ideker, T., Sharan, R.: NetworkBLAST: comparative analysis of protein networks. Bioinformatics 24(4), 594 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. Kelley, B.P., Sharan, R., Karp, R., Sittler, E.T., Root, D.E., Stockwell, B.R., Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc. Natl. Acad. Sci. 100, 11394–11399 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kharchenko, P., Church, G.M., Vitkup, D.: Expression dynamics of a cellular metabolic network. Molecular Systems Biology 1 (2005)

    Google Scholar 

  27. Kirac, M., Ozsoyoglu, G.: Protein Function Prediction Based on Patterns in Biological Networks. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 197–213. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Koonin, E.: Orthologs, paralogs and evolutionary genomics. Annu. Rev. Genet. 39, 309–338 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Koyuturk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., Grama, A.: Pairwise alignment of protein interaction networks. Journal of Computational Biology 13(2), 182–199 (2006)

    Article  PubMed  Google Scholar 

  30. Kuchaiev, O., Milenkovic, T., Memisevic, V., Hayes, W., Przulj, N.: Topological network alignment uncovers biological function and phylogeny. Arxiv, 0810.3280v2 (2009)

    Google Scholar 

  31. Lim, J., Hao, T., Shaw, C., Patel, A.J., Szabó, G., Rual, J.F., Fisk, C.J., Li, N., Smolyar, A., Hill, D.E., et al.: A Protein–Protein Interaction Network for Human Inherited Ataxias and Disorders of Purkinje Cell Degeneration. Cell 125(4), 801–814 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. Manber, U.: Introduction to algorithms: a creative approach. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

    Google Scholar 

  33. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems 14: Proceedings of the 2002 [sic] Conference, p. 849. MIT Press, Cambridge (2002)

    Google Scholar 

  34. O’Brien, K.P., Remm, M., Sonnhammer, E.L.L.: Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Research 33(Database issue), D476 (2005)

    Article  Google Scholar 

  35. O’Madadhain, J., Fisher, D., White, S., Boey, Y.: The JUNG (Java Universal Network/Graph) Framework. University of California, California (2003)

    Google Scholar 

  36. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)

    Article  CAS  PubMed  Google Scholar 

  37. Ross, J., Schreiber, I., Vlad, M.O.: Determination of Complex Reaction Mechanisms: Analysis of Chemical, Biological, and Genetic Networks. Oxford University Press, USA (2006)

    Google Scholar 

  38. Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: The database of interacting proteins: 2004 update. Nucleic Acids Research 32(Database issue), D449 (2004)

    Article  Google Scholar 

  39. Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient Algorithms for Detecting Signaling Pathways in Protein Interaction Networks. Journal of Computational Biology 13(2), 133–144 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nature Biotechnology 24, 427–433 (2006)

    Article  CAS  PubMed  Google Scholar 

  41. Steinbeck, C., Hoppe, C., Kuhn, S., Floris, M., Guha, R., Willighagen, E.L.: Recent Developments of the Chemistry Development Kit (CDK)-An Open-Source Java Library for Chemo-and Bioinformatics. Current Pharmaceutical Design 12(17), 2111–2120 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. Stuart, J.M., Segal, E., Koller, D., Kim, S.K.: A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules. Science 302(5643), 249–255 (2003)

    Article  CAS  PubMed  Google Scholar 

  43. Taylor, N.: proWeb Tree Viewer, http://www.proweb.org/treeviewer/

  44. Tian, W., Samatova, N.F.: Pairwise alignment of interaction networks by fast identification of maximal conserved patterns. In: Proc. of the Pacific Symposium on Biocomputing (2009)

    Google Scholar 

  45. Vishwanathan, S.V.N., Borgwardt, K.M., Schraudolph, N.N.: Fast Computation of Graph Kernels. Technical report, NICTA (2006)

    Google Scholar 

  46. White, S., Smyth, P.: Algorithms for estimating relative importance in networks. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 266–275. ACM, New York (2003)

    Chapter  Google Scholar 

  47. Wong, S.L., Zhang, L.V., Tong, A.H.Y., Li, Z., Goldberg, D.S., King, O.D., Lesage, G., Vidal, M., Andrews, B., Bussey, H., et al.: Combining biological networks to predict genetic interactions. Proceedings of the National Academy of Sciences 101(44), 15682–15687 (2004)

    Article  CAS  Google Scholar 

  48. Zhou, X., Kao, M.C.J., Wong, W.H.: Transitive functional annotation by shortest-path analysis of gene expression data. Proceedings of the National Academy of Sciences 99(20), 12783–12788 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Towfic, F., Greenlee, M.H.W., Honavar, V. (2009). Aligning Biomolecular Networks Using Modular Graph Kernels. In: Salzberg, S.L., Warnow, T. (eds) Algorithms in Bioinformatics. WABI 2009. Lecture Notes in Computer Science(), vol 5724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04241-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04241-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04240-9

  • Online ISBN: 978-3-642-04241-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics