Memoisation for constraint-based local search

Magnus Agren

Swedish Institute of Computer Science
Box 1263, SE — 164 29 Kista, Sweden
magnus.agren@sics.se

Abstract. We present a memoisation technique for constraint-based lo-
cal search based on the observation that penalties with respect to some
interchangeable elements need only be calculated once. We apply the
technique to constraint-based local search on set variables, and demon-
strate the usefulness of the approach by significantly speeding up the
penalty calculation of a commonly used set constraint.

1 Introduction and background

Memoisation [1] is an optimisation technique often used to speed up function
calls in programming languages. By caching the calculated results for inputs to
a given function, subsequent calls for already seen inputs to the function do not
need to be recalculated but can be looked up and returned directly. In this paper
we apply memoisation to constraint-based local search.

In constraint-based local search [2], constraint measures are used to navigate
in the search space and move towards (optimal) solutions. Given a constraint,
such measures include penalties and variable conflicts, which are estimations
on how far the constraint currently is from being satisfied and how much each
variable contributes to that distance, respectively. Since a local search algorithm
may perform many moves, and each move may mean evaluating the constraint
measures with respect to a large number of configurations (complete assign-
ments), the evaluation must be done efficiently. This is often achieved by using
incremental algorithms (see for example [3]).

In [4] we presented constraint measures with such incremental algorithms
for using monadic existential second-order logic (AMSO) for modelling set con-
straints in local search. For example, the set constraint S C T (strict subset)
can be modelled in AMSO by:

ISIT((Va(x ¢ SVa € T))A(Fz(x ¢ SAz € T))) (1)

We call such constraint models IMSO constraints. Now, given a common universe
U for all set variables and an element u of this universe, the penalty of a primitive
constraint of the form u € S or u ¢ S is zero if it is satisfied, and one otherwise;
the penalty of a conjunction (disjunction) is the sum (minimum) of the penalties
of its conjuncts (disjuncts); and the penalty of a first-order universal (existential)
quantification is the sum (minimum) of the penalties of the quantified formula
where the occurrences of the bound variable are replaced by each element of U.

a) —1, {(a) — 1,
{0 =2} {Eb)) — 1, (b) — 1,
(c) — 0} () =1}

Or

{(@) =2, {(a) =1,
{0—13 (b) =2, (b) =1,
(c) =1} (c) — 0}

O

Fig. 1. Penalty dag of 3S3T((Va(z ¢ SVa € T))ANBx(x ¢ SAx €T)))

The practical relevance of using IMSO constraints in local search was demon-
strated in [4], where a necessary built-in global constraint was assumed missing
and replaced by a corresponding IMSO constraint, while still obtaining compet-
itive results in terms of runtime and robustness.

In this paper we use penalty dags (directed acyclic graphs), namely attributed
parse trees, for illustrative purposes only, and not as an implementation device
for supporting incremental maintenance algorithms, as in [4]. For instance, the
calculation of the penalty of (1) under the configuration k = {S + {a,b},T — 0}
is illustrated by the penalty dag in Fig. 1; the map {() — 3} above the sink 33T
indicates that the penalty of (1) is 3.

Interchangeable elements (or values) must often be identified in order to solve
problems efficiently. The constraint programming community has traditionally
done this in the context of symmetry breaking for complete search, where the
aim is to avoid rediscovering (symmetrically) already encountered (non)solutions
(see [5] for an early reference).

On the contrary, we here take advantage of interchangeable elements, and the
dagin Fig. 1 can also be used to illustrate the key idea of this paper. Consider the
penalty maps above the (rightmost) A and V connectives in the dag which, for
the corresponding subformulas rooted at those connectives, indicate the penalties
with respect to each element of the universe U = {a, b, c¢}. Note that, in both of
these penalty maps, the penalties are the same for the elements a and b. This is
not by chance but because a and b are interchangeable in the sense that they are
both in S and not in T" under the configuration k. In fact, any element (of the
universe) in S and not in 7" would be interchangeable with a and b and would also
share these same penalty maps in the dag. Hence, the penalty maps need only
be calculated once for all interchangeable elements, and can then later simply
be returned from a cache taking interchangeability into account. We show in the
following that this can lead to a significant speedup of local search algorithms
with IMSO constraints. Note that although we only consider penalties in this
paper, all results can be generalised for variable-conflicts as well.

2 Memoising IMSO penalties using signatures

Recall that the penalties of first-order quantifications are sums and minima of
the penalties of the quantified subformula where the occurrences of the bound
first-order variable are replaced by each element of the universe, and consider
again (1) and k = {S — {a,b}, T — 0}. The key idea of this paper is based on
the following observation: since the elements a and b are both in S and not in
T, the penalties of, for example, the quantified subformula ¢ SAz € T are
the same when x is replaced by a or b. Indeed, both a and b are bound to 2 in
the map above the rightmost A-node in Fig. 1. So a and b are interchangeable
in the sense that it is only necessary to calculate the penalty of the subformula
given one of the elements, and then reuse that value for the other element. We
characterise such interchangeable elements by their signatures. The signature of
an element u € U with respect to a sequence of set variables (S1,...,S,) under
a configuration k is a bit string by - - - by, such that b; = 1 if and only if u € k(.S;).

Ezample 1. The respective signatures of a, b, ¢ with respect to (S,T) under
k={Sw {a,b}, T +— 0} are 10, 10, 00. So a and b share the same signature.

Using signatures to reason about interchangeable elements (or values) was done
also in [6], but there in the context of symmetry breaking for complete search.

We will now present a penalty maintenance algorithm for IMSO constraints
based on memoisation and element signatures. Given an IMSO constraint ¢ =
351 -+ - 35, ¢, this algorithm operates on a data structure D with the following
fields:

— D.penalty, the penalty of & under the current configuration;

— D.signature, an array indexed by the elements of the universe such that
D.signature[u] is the signature of u with respect to (S,...,S,) under the
current configuration;

— D.cache, an array indexed by the (first-order) quantified subformulas ¢ of ¢
such that D.cache|[¢] is the penalty cache of ¢ (these penalty caches corre-
spond to the penalty maps of the quantified subformulas in Fig. 1, but are
based on element signatures and not on elements);

— D.min, an array indexed by the first-order existential quantifications Jx¢ of
& such that D.min[Jz¢] is a multiset of the penalties of ¢ under the current
configuration, where the occurrences of x in ¢ is replaced by each element
of U. So the minimum value of D.min[3x¢] is the penalty of Jx¢.

Following the ideas in [7], the penalty maintenance algorithm consists of
two parts: an initialisation part and an update part. Both of these parts call
a generic function proj_penalty which is used to traverse the IMSO constraint.
The intuition behind this is that a call proj_penalty(D, @, A) returns the penalty
of @ projected on some subset A of the universe. By initially setting A to U,
the penalty of @ is obtained. By later setting A to {u}, for example, the penalty
of @ projected on {u} is obtained. So given a move, for example, of the form
add(S,u)(k) (the result of adding u to S under k), the penalty change of @

Algorithm 1 Generic function for initialising and updating IMSO penalties.

1: function proj_penalty(D, P, A)
2: if @ is of the form Vx¢ then

3: p—0
4: for all u € A do
5: if D.signature[u] € D.cache[¢] then
6: p — p+ D.cache[¢][D.signature [u]]
T else
8: q < proj-penalty (D, ¢[u/x], D)
9: D.cache[9][D.signature[u]] — g
10: p—ptq
11: return p
12: if @ is of the form Jz¢ then
13: for all w € A do
14: if D.signature[u] € D.cache[¢] then
15: add(D.cache[@][D.signature [u]], D.min[3z¢])
16: else
17: q < proj_penalty (D, ¢[u/x],)
18: D.cache[9][D.signature[u]] — q
19: add(q, D.min[3z¢])
20: return min(D.min[Jz¢])
21: if @ is of the form ¢ A1 then
22: return proj_penalty(D, ¢, A) + proj_penalty (D,), A)
23: if @ is of the form ¢ V1) then
24: return min(proj_penalty (D, ¢, A), proj_penalty (D, 1, A))
25: if @ is of the form u € S; then return 1 — D.signature[u][i]
26: if @ is of the form u ¢ S; then return D.signature [u][i]

can be obtained by two calls proj_penalty(D,®, {u}) before and after the move,
the penalty change being the difference of the results of these two calls. Note
that this difference is the same as the difference of the results of two such calls
where {u} is replaced by U. Also note that the current configuration would be
a superfluous argument to proj_penalty since it is implicit from D.signature.

The function proj_penalty is shown in Algorithm 1. We here only discuss
the quantifier cases on lines 2 to 20 as the other cases closely follow the penalty
function described in the first section. For a call proj_penalty(D,Vag, A), the sum
is calculated by looking up D.cache[d] given the signature of each element of A.
When a value is in the cache it can be directly used (line 6). Otherwise, the value
is calculated by a recursive call where the occurrences of the bound variable = are
replaced by the element u € A, and stored in the cache for subsequent calls with
the same signature (lines 8 to 10). A call proj_penalty(D, 3z, A) is similar, the
only difference being that the minimum is calculated by first adding the penalty
for the signature of each element of A to the multiset D.min[Jz¢@] (lines 15 and
19), of which the minimum value is then returned (line 20).

Algorithm 2 Initialise and update procedures for IMSO penalties.

1: procedure initialise(D,3S1 - - -3¢, U)(k)
2: for all w € U do

3: D.signature[u] < the signature of u with respect to (Si,...,S,) under k
4: D.penalty < proj_penalty(D, ¢, U)

5: procedure update(D, ®)(k,£)

6: if ¢ is of the form add(S;,u)(k) or drop(Si,u)(k) then
T for all subformulas Jx¢ of @ do

8: remove(D.cache[p][D.signature [u]], D.min[Iz¢])
9: po — proj_penalty(D, P, {u})

10: for all subformulas Jz¢ of ¢ do

11: remove(D.cache[p][D.signature [u]], D.min[Iz¢])
12: flip the value D.signature[u][i]

13: p1 — proj_penalty(D, P, {u})

14: D.penalty — D.penalty + (p1 — po)

15: else

16: failure

Note that D.signature is used to represent the current configuration. So be-
fore a call proj_penalty(D,®, A), D.signature must be updated to reflect this.
Also note that, before a call proj_penalty(D,®, A) on an already initialised D,
the penalties in any multiset D.min[Jz¢] corresponding to the elements of A,
must be removed. This is necessary since projecting the penalty of an existential
quantification on A C U still requires taking the penalties with respect to all
elements of U into account (since it is a minimum value).

The procedure initialise is shown in Algorithm 2. A call initialise(D, @, U)(k)
initialises the signatures of D.signature to reflect the configuration & (lines 2 to
3) after which a call to proj_penalty is used to initialise D.penalty (line 4).

The procedure update is also shown in Algorithm 2. Given a move ¢ of the
form add(S;, u)(k) or drop(S;,u)(k) (the results of adding or dropping u from S;
under k), a call update(D, @) (k,) must (twice) update each multiset in D.min by
removing one occurrence of the value corresponding to the signature of w (lines 7
to 8 and 10 to 11). (See also the note above concerning this.) The penalty change
is then obtained as the difference of the results of two calls to proj_penalty (lines
9 and 13), before and after the move ¢ has been reflected on D.signature (line
12). This penalty change is then used to update D.penalty (line 14).

Ezample 2. Let @ denote (1) and let V¢ and Jayp denote respectively the (first-
order) universal and existential quantifications of @. Given k = {S — {a,b},T —
0} and U = {a,b,c}, the call initialise(D, P, U)(k) initialises the fields of the
data structure D such that:

D.penalty = 3 D.signature = [a — 10,b — 10, ¢ — 00]

o ~ [¢+1]00+ 0,10 + 1]
D.min = [3x¢p — {1,2,2}] D.cache = P[00 — 1,10 — 2]

Considering now adding ¢ to T, the subsequent call update(D,®?)(k,{), where
¢ = add(T,c)(k), changes the fields of D such that:

D.penalty = 2 D.signature = [a — 10,b — 10, ¢ — 01]

o _ [¢+—1[00+ 0,01+ 0,10 — 1]
D.min = [Fzp — {0,2,2}] D.cache = Y [00 1,01 — 0,10 +— 2]

The penalty is decreased to two since the constraint is now closer to being
satisfied. This is calculated by:

1. removing 1 (the penalty cached for 00 in D.cache[y)]) from D.min[3x1)],
setting this multiset temporarily to {2,2} (lines 7 to 8 of Algorithm 2);

2. obtaining pg = 1 by the call proj_penalty(D, @, {c}), which also adds 1 back

to D.min[Fz1)] (line 9);

removing 1 from D.min[3ze)] again (lines 10 to 11);

updating the signature of ¢ to 01 (line 12);

5. obtaining p; = 0 by the call proj_penalty(D, ®,{c}), which also adds 0 to
D.min[3x], setting it to {0,2,2} (line 13);

6. increasing D.penalty by the difference p; — pg =0 — 1 = —1 (line 14).

=~

3 Evaluation

The algorithms of the previous section were implemented in Objective Caml
(http://caml.inria.fr) and the experiments were performed on a 2.67 GHz
Intel Core i7 Linux machine (using only one processor core).

In order to evaluate the memoisation-based penalty maintenance algorithm
(called memo below) we have compared it to the incremental penalty mainte-
nance algorithm of [4] (called nomemo below). We compared these two algo-
rithms by measuring their speed in terms of average number of iterations per
second when solving two given problems subset and partition. Both problems
are stated on n set variables § = {S1,...,5,} all with a common universe U of
cardinality n such that:

— for subset, there is an S; C S;41 constraint for each 1 < i < n;
— for partition, there is a single Partition(S) constraint.

While the S; C S;41 constraints are modelled in IMSO as (1), the Partition(S)
constraint (requiring all set variables to be pairwise disjoint and their union to
equal U, where any set variable may be empty) is modelled in IMSO as:

(xeS— (x g San---ANx ¢ S,))

A
(x €Sy — (x ¢ SsN---Nx¢&Sy))
35135, | Va ARERWAN
(x € Spm1 — x ¢ Sp)
A

(xeSiVv---vzes,)

Algorithm 3 A simple hill climber for evaluating memo.
1: function HiLLCLIMBER(V, C)
2: k < a random configuration for V
3 while penalty(C)(k) > 0 do
4 choose a possible move £ of the form add(S,u)(k) or drop(S,u)(k)
5: minimising penalty(C)(¢) for
6
7

k«— ¢
return k

We chose both simple 2-ary constraints as well as a more complex n-ary
constraint in order to compare the overhead versus the gain for memo. Intuitively,
the gain should be greater for more complex constraints (that is longer IMSO
formulas), since each saved recalculation would have been more costly for such
constraints.

The local search algorithm used for the experiments is a very simple hill
climber, shown in Algorithm 3. After initialising the variables V to a random
configuration, the hill climber greedily chooses an add or a drop move minimising
the penalty of all constraints C as the next configuration. If a configuration
satisfying all constraints is found (that is, if the penalty of all constraints is
zero), this solution is returned. This hill climber serves our purposes simply since
none of the problems subset or partition are particularly hard. This is however
irrelevant as we are here only interested in measuring the speed of a memoisation-
based penalty maintenance algorithm (that is memo) and comparing this speed
with the speed of another incremental penalty maintenance algorithm (that is
nomemo). Solving open instances of hard problems or making comparisons with
other solving approaches are thus not purposes of this paper.

We ran the instances where n = |U| € {20, 25, 30, 35, 40, 45, 50, 55} for both
problems and the results are shown in Table 1. For each of the problems subset
and partition and with respect to a given instance n, the columns labelled memo
and nomemo indicate the number of iterations per second (in Algorithm 3,
higher values are better) achieved by using the respective penalty maintenance
algorithms. The column labelled speedup indicates the speedup of running memo
compared with nomemo. All values are averages over ten runs. The same random
seeds were used when comparing the two different algorithms. Hence, the number
of iterations (not reported here) as well as the solutions were the same for the
two different algorithms.

On the one hand, using memo is slower for subset on all instances, although
by a small (and seemingly constant) factor. On the other hand, using memo is
significantly faster for partition on all instances. As suspected above, the over-
head can be larger than the gain for simple 2-ary constraints since the cost for
(re)calculating the penalty (or incrementally updating the same) is small for
such constraints. This is not the case for more complex n-ary constraints, which
is why the gain can be larger than the overhead for such constraints. This clearly
shows the usefulness of memoisation-based penalty maintenance algorithms for
local search with AMSO.

Table 1. Comparing memo with nomemo when solving the problems subset and
partition for the instances in the column labelled n. For each problem, the columns
labelled memo and nomemo indicate the number of iterations per second achieved by
using the respective algorithms, and the column labelled speedup indicates the speedup
of running memo compared with nomemo. All values are averages over ten runs.

subset partition

n |memo nomemo speedup|memo nomemo speedup
20| 665.7 893.4 0.7|1017.4 193.5 5.3
25| 421.8 572.1 0.7| 432.8 93.2 4.6
30| 292.1 389.3 0.8| 332.6 50.5 6.6
35| 214.4 285.0 0.8| 248.5 29.3 8.5
40| 163.5 217.9 0.8| 164.2 18.4 8.9
45 129.4 171.1 0.8 112.9 12.3 9.2
50| 104.6 133.9 0.8| 73.6 8.4 8.8
55| 86.1 111.5 0.8 47.4 5.9 8.0

4 Conclusion

We have applied memoisation to the calculation of penalties for IMSO con-
straints. Our approach is based on identifying interchangeable elements in the
first-order quantifications of the AMSO constraints, and characterising these el-
ements by their signatures. Such interchangeable elements share penalties and
need only be calculated and cached once, thereby lowering the number of nec-
essary calculations as well as the number of cached penalties. Our results show
that this can lead to a significant speedup when using IMSO constraints in local
search.

Acknowledgements. I thank Pierre Flener and Justin Pearson for discussions
and comments, as well as the anonymous referees for constructive reviews.

References

1. Michie, D.: Memo functions: a language feature with “rote-learning” properties.
Research Memorandum MIP-R-29. Edinburgh: Department of Machine Intelligence
& Perception (1967)
2. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press (2005)
3. Van Hentenryck, P., Michel, L.: Differentiable invariants. In Benhamou, F., ed.:
Proceedings of CP’06. Volume 4204 of LNCS., Springer-Verlag (2006) 604-619
4. Agren, M., Flener, P., Pearson, J.: Generic incremental algorithms for local search.
Constraints 12(3) (September 2007) 293-324 (Collects the results of papers at CP-
AI-OR’05, CP’05, and CP’06).

5. Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction prob-
lems. In: Proceedings of AAAT’91. (1991) 227-233

6. Sellmann, M., Van Hentenryck, P.: Structural symmetry breaking. In: Proceedings
of IJCATI’05, Professional Book Center (2005) 298-303

7. Agren, M.: Set Constraints for Local Search. PhD thesis, Uppsala University (2007)

