Skip to main content

Robustness of Kernel Based Regression: A Comparison of Iterative Weighting Schemes

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Abstract

It has been shown that Kernel Based Regression (KBR) with a least squares loss has some undesirable properties from robustness point of view. KBR with more robust loss functions, e.g. Huber or logistic losses, often give rise to more complicated computations. In this work the practical consequences of this sensitivity are explained, including the breakdown of Support Vector Machines (SVM) and weighted Least Squares Support Vector Machines (LS-SVM) for regression. In classical statistics, robustness is improved by reweighting the original estimate. We study the influence of reweighting the LS-SVM estimate using four different weight functions. Our results give practical guidelines in order to choose the weights, providing robustness and fast convergence. It turns out that Logistic and Myriad weights are suitable reweighting schemes when outliers are present in the data. In fact, the Myriad shows better performance over the others in the presence of extreme outliers (e.g. Cauchy distributed errors). These findings are then illustrated on toy example as well as on a real life data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edgeworth, F.Y.: On Observations Relating to Several Quantities. Hermathena 6, 279–285 (1887)

    Google Scholar 

  2. Tukey, J.W.: A survey of sampling from contaminated distributions. In: Olkin, I. (ed.) Contributions to Probability and Statistics, pp. 448–485. Stanford University Press, Stanford (1960)

    Google Scholar 

  3. Huber, P.J.: Robust Estimation of a Location Parameter. Ann. Math. Stat. 35, 73–101 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hampel, F.R.: A General Definition of Qualitative Robustness. Ann. Math. Stat. 42, 1887–1896 (1971)

    Article  MATH  Google Scholar 

  5. Huber, P.J.: Robust Statistics. Wiley, Chichester (1981)

    Book  MATH  Google Scholar 

  6. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, Chichester (2003)

    MATH  Google Scholar 

  7. Maronna, R., Martin, D., Yohai, V.: Robust Statistics. Wiley, Chichester (2006)

    Book  MATH  Google Scholar 

  8. Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics: The Approach Beased on Influence Functions. Wiley, Chichester (1986)

    MATH  Google Scholar 

  9. Christmann, A., Steinwart, I.: Consistency and Robustness of Kernel Based Regression in Convex Risk Minimization. Bernoulli 13(3), 799–819 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Debruyne, M., Christmann, A., Hubert, M., Suykens, J.A.K.: Robustness and Stability of Reweighted Kernel Based Regression. Technical Report 06-09, Department of Mathematics, K.U.Leuven, Leuven, Belgium (2008)

    Google Scholar 

  11. Debruyne, M., Hubert, M., Suykens, J.A.K.: Model Selection in Kernel Based Regression using the Influence Function. J. Mach. Learn. Res. 9, 2377–2400 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  13. Vapnik, V.N.: Statistical Learning Theory. Wiley, Chichester (1999)

    MATH  Google Scholar 

  14. Suykens, J.A.K., De Brabanter, J., Lukas, L., Vandewalle, J.: Weighted Least Squares Support Vector Machines: Robustness and Sparse Approximation. Neurocomputing 48(1-4), 85–105 (2002)

    Article  MATH  Google Scholar 

  15. Arce, G.R.: Nonlinear Signal Processing: A Statistical Approach. Wiley, Chichester (2005)

    MATH  Google Scholar 

  16. Gonzalez, J.G., Arce, G.R.: Weighted Myriad Filters: A Robust Filtering Framework derived from Alpha-Stable Distributions. In: Proceedings of the 1996 IEEE Conference one Acoustics (1996)

    Google Scholar 

  17. Hubert, M., Rousseeuw, P.J., Vanden Branden, K.: ROBPCA: a New Approach to Robust Principal Components Analysis. Technometrics 47, 64–79 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Brabanter, K. et al. (2009). Robustness of Kernel Based Regression: A Comparison of Iterative Weighting Schemes. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04274-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04274-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04273-7

  • Online ISBN: 978-3-642-04274-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics