Skip to main content

Calcium Responses Model in Striatum Dependent on Timed Input Sources

  • Conference paper
Artificial Neural Networks – ICANN 2009 (ICANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5768))

Included in the following conference series:

  • 1972 Accesses

Abstract

The striatum is the input nucleus of the basal ganglia and is thought to be involved in reinforcement learning. The striatum receives glutamate input from the cortex, which carries sensory information, and dopamine input from the substantia nigra, which carries reward information. Dopamine-dependent plasticity of cortico-striatal synapses is supposed to play a critical role in reinforcement learning. Recently, a number of labs reported contradictory results of its dependence on the timing of cortical inputs and spike output. To clarify the mechanisms behind spike timing-dependent plasticity of striatal synapses, we investigated spike timing-dependence of intracellular calcium concentration by constructing a striatal neuron model with realistic morphology. Our simulation predicted that the calcium transient will be maximal when cortical spike input and dopamine input precede the postsynaptic spike. The gain of the calcium transient is enhanced during the “up-state” of striatal cells and depends critically on NMDA receptor currents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reynolds, J., Wickens, J.: Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw. 15(4-6), 507–521 (2002)

    Article  Google Scholar 

  2. Nakano, T., Doi, T., Yoshimoto, J., Doya, K.: A kinetic model of dopamine and calcium dependent striatal synaptic plasticity (submitted, 2009)

    Google Scholar 

  3. Pawlak, V., Kerr, J.N.D.: Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J. Neurosci. 28(10), 2435–2446 (2008)

    Article  Google Scholar 

  4. Fino, E., Glowinski, J., Venance, L.: Bidirectional activity-dependent plasticity at corticostriatal synapses. J. Neurosci. 25(49), 11279–11287 (2005)

    Article  Google Scholar 

  5. Lisman, J.: A mechanism for the hebb and the anti-hebb processes underlying learning and memory. Proc. Natl. Acad. Sci. USA 86(23), 9574–9578 (1989)

    Article  Google Scholar 

  6. Artola, A., Singer, W.: Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends in Neurosciences 16(11), 480–487 (1993)

    Article  Google Scholar 

  7. Hansel, C., Artola, A., Singer, W.: Relation between dendritic ca2+ levels and the polarity of synaptic long-term modifications in rat visual cortex neurons. Eur. J. Neurosci. 9(11), 2309–2322 (1997)

    Article  Google Scholar 

  8. Zucker, R.S.: Calcium- and activity-dependent synaptic plasticity. Current Opinion in Neurobiology 9(3), 305–313 (1999)

    Article  Google Scholar 

  9. Gong, S., Zheng, C., Doughty, M.L., Losos, K., Didkovsky, N., Schambra, U.B., Nowak, N.J., Joyner, A., Leblanc, G., Hatten, M.E., Heintz, N.: A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961), 917–925 (2003)

    Article  Google Scholar 

  10. Wolf, J.A., Moyer, J.T., Lazarewicz, M.T., Contreras, D., Benoit-Marand, M., O’Donnell, P., Finkel, L.H.: NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. Journal of Neuroscience 25(40), 9080–9095 (2005)

    Article  Google Scholar 

  11. Hines, M.L., Carnevale, N.T.: Neuron: a tool for neuroscientists. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry 7(2), 123–135 (2001)

    Article  Google Scholar 

  12. Segev, I.: Single neurone models: oversimple, complex and reduced. Trends in Neurosciences 15(11), 414–421 (1992)

    Article  Google Scholar 

  13. Koch, C.: Biophysics of computation (January 2004)

    Google Scholar 

  14. Catterall, W.A.: Structure and regulation of voltage-gated ca2+ channels. Annu. Rev. Cell. Dev. Biol. 16, 521–555 (2000)

    Article  Google Scholar 

  15. Geit, W.V., Achard, P., Schutter, E.D.: Neurofitter: A parameter tuning package for a wide range of electrophysiological neuron models. Frontiers in Neuroinformatics (January 2007)

    Google Scholar 

  16. Koch, C., Segev, I.: Methods in neuronal modeling: From ions to networks, p. 671 (January 1998)

    Google Scholar 

  17. Surmeier, D.J., Bargas, J., Hemmings, H.C., Nairn, A.C., Greengard, P.: Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14(2), 385–397 (1995)

    Article  Google Scholar 

  18. Gruber, A.J., Solla, S.A., Surmeier, D.J., Houk, J.C.: Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. J. Neurophysiol. 90(2), 1095–1114 (2003)

    Article  Google Scholar 

  19. Wilson, C.J., Kawaguchi, Y.: The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16(7), 2397–2410 (1996)

    Google Scholar 

  20. Carter, A.G., Sabatini, B.L.: State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44(3), 483–493 (2004)

    Article  Google Scholar 

  21. Kerr, J.N.D., Plenz, D.: Action potential timing determines dendritic calcium during striatal up-states. J. Neurosci. 24(4), 877–885 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakano, T., Yoshimoto, J., Wickens, J., Doya, K. (2009). Calcium Responses Model in Striatum Dependent on Timed Input Sources. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds) Artificial Neural Networks – ICANN 2009. ICANN 2009. Lecture Notes in Computer Science, vol 5768. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04274-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04274-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04273-7

  • Online ISBN: 978-3-642-04274-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics